a. 日本丰桥技术科学大学电气与电子信息工程系 b. 日本茨城大学国立技术研究所 c. 日本 TechnoPro 公司,TechnoPro R&D 公司 d. 日本丰桥技术科学大学电子跨学科研究所 (EIIRIS) e. 日本丰桥技术科学大学应用化学与生命科学系 f. 日本丰桥技术科学大学计算机科学与工程系 摘要 微电极技术在电生理学中至关重要,并为神经科学和医学应用做出了贡献。然而,必须尽量减少与针状电极插入脑组织和植入手术相关的组织损伤,因为这些损伤使稳定的慢性记录变得不可能。在这里,我们报告了一种使用 5 微米直径针状电极的方法,该方法能够通过手术方法跟踪组织运动。电极用可溶解材料放置在小鼠的脑组织上,同时减少对组织的物理压力;然后将装置植入大脑,无需将其固定在颅骨上,同时在组织上实现电极浮动。该电极显示稳定的记录,6 个月内信噪比无明显下降,并且与使用具有相同针头几何形状的其他颅骨固定电极相比,组织损伤最小。
4H-SiC功率器件具有独特的高压、高频、高温特性,有着巨大的应用潜力。[1 – 3 ] 4H-SiC肖特基势垒二极管(SBD)由于其单极导电模式,广泛应用于高频领域。然而,较大的漏电流限制了它的击穿性能和高压应用。[4 – 6 ] 4H-SiC P–I–N二极管由于其双极导电模式,广泛应用于大功率场合。[7 – 9 ] 然而,较差的反向恢复特性限制了它在高频领域的应用。4H-SiC合并P–I–N肖特基(MPS)二极管是一种很有前途的器件,它将肖特基和PN结集成在一个芯片上,实现了优异的击穿性能和快速的反向恢复特性。[10 – 14 ]
摘要 共烧结低温陶瓷的增材制造 (AM) 为制造新型 3D 射频 (RF) 和微波通信组件、嵌入式电子设备和传感器提供了独特的途径。本文介绍了有史以来首次直接 3D 打印低温共烧结陶瓷/浮动电极 3D 结构。基于浆料的 AM 和选择性激光烧蚀 (SLB) 用于制造带有银 (Ag) 内部浮动电极的块状电介质 Bi 2 Mo 2 O 9 (BMO,烧结温度 = 620 – 650°C,ε r = 38)。开发了一种可打印的 BMO 浆料,并优化了 SLB,以改善边缘定义并烧掉粘合剂而不会损坏陶瓷。SLB 增加了保持形状所需的生坯强度,生产出无裂纹的零件,并防止共烧结过程中银渗入陶瓷。烧结后,将生坯部件放入传统炉中烧结,温度为 645°C,烧结时间为 4 小时,密度达到 94.5%,抗压强度达到 4097 MPa,相对介电常数 (εr) 为 33.8,损耗角正切 (tanδ) 为 0.0004 (8 GHz)(BMO)。由此证明了使用 SLB 后进行打印后烧结步骤来创建 BMO/Ag 3D 结构的可行性。
图 70 货船和油轮在加州中部沿海过境 (MarineCadastre.gov) ........................................................................................................................................................................... 141 图 71 货船和油轮在加州莫罗湾沿海过境 (MarineCadastre.gov) ........................................................................................................................................................... 142 图 72 货船和油轮在加州北部沿海过境 (MarineCadastre.gov) ........................................................................................................................................................... 143 图 73 货船和油轮在俄勒冈州和华盛顿州沿海过境 (MarineCadastre.gov) ........................................................................................................................................... 143 图 74 所有船只在夏威夷过境 (MarineCadastre.gov) ........................................................................................................... 144 图 75 缅因州海上风电选址图 (缅因州,2021 年) ........................................................................................................... 145 图 76 货船、油轮和拖船过境缅因湾 (MarineCadastre.gov 145 图 77 风力发电曲线 (Musial, 2020) ........................................................................................... 158 图 78 加州 OCS 的海上风速和地点 (Musial et al., 2016) ........................... 159 图 79 风速和 Si
浮动计划说明:如果在线计划不起作用,请填写此浮动计划。请至少在船舶运营前两小时提交。将填妥的表格通过电子邮件发送给船舶安全官 Anne Sevon (asevon@fiu.edu)、您的 PI/主管、您的船长紧急联系人、船长 Bill Chamberlain (wchambe@fiu.edu) 和 Rafael Gonzalez-Collazo (gonzalra@fiu.edu)。如果此表格上的问题与您的请求不符,请输入“N/A”。船只代码:注册号:船只大小和品牌:卡车编号:卡车和拖车停放地点:出发地:出发日期:出发时间:返回日期:返回时间:目的地(区域的通用名称):纬度:经度:最可能路径的描述:旅行目的:资金(PantherSoft 资金来源 ID):PI/主管姓名和电子邮件:船长紧急联系人(FIU 附属机构):船长紧急联系人电子邮件:
本推荐做法是根据联合行业项目 (JIP) 的结果制定的。这项工作由 DNV GL 完成,并在定期项目会议和研讨会上与 JIP 参与组织的个人进行了讨论。特此感谢他们提供的重要、宝贵和建设性意见。以下组织(按字母顺序列出)参加了 JIP:Acciona、BayWa re、BlueC Engineering、Carpi Tech、Ciel & Terre International、CNR – Compagnie Nationale du Rhone、EDF - Électricité de France、EDP - Energias de Portugal、Equinor、Innosea - part of Aqualis Braemar LOC Group、Isigenere、JLD International、Mainstream Renewable Power、Makor Energy Solutions、Noria Energy、QuantSolar、RWE、Scatec、Seaflex、SolarMarine Energy、Statkraft、SunRise E&T Corporation、TNO、Total。
本推荐做法是根据联合工业项目 (JIP) 的结果制定的。这项工作由 DNV GL 完成,并在定期项目会议和研讨会上与参与 JIP 的组织的个人进行了讨论。在此感谢他们提供的重要、宝贵和建设性意见。以下组织(按字母顺序列出)参加了 JIP:Acciona、BayWa r.e、BlueC Engineering、Carpi Tech、Ciel & Terre International、CNR – Compagnie Nationale du Rhone、EDF - Électricité de France、EDP - Energias de Portugal、Equinor、Innosea - part of Aqualis Braemar LOC Group、Isigenere、JLD International、Mainstream Renewable Power、Makor Energy Solutions、Noria Energy、QuantSolar、RWE、Scatec、Seaflex、SolarMarine Energy、Statkraft、SunRise E&T Corporation、TNO、Total。