数学11。iain alderman - 火箭发射和通过动态系统建立的土地系统。12。Dylan Barker - N体动力学系统来描述蜘蛛网。13。Jeffrey Charcut - 动态电路:使用微分方程进行建模和分析。14。Aaron Croos - 使用动态系统来预测天气模式。15。Brian Hubbard - 倒摆的动态控制。16。标记Lammers-Meis - 三体问题的动力系统。17。Kolbe McLenon-动态系统如何帮助商人将数学变成金钱。18。蒂姆·迈耶(Tim Meyer) - 捕食者和猎物:动物种群的数学建模。19。雅各布·桑德(Jacob Sander) - 用微分方程解释的一个简单的摆。20。ben seffens - 种群建模的微分方程。21。Ethan Turner - 揭幕March Madness:通过动态系统预测NCAA锦标赛的获胜者。
1 DeutschesInstitutfürDemenzPrävention(DIDP),萨尔兰大学医学院 - 霍姆堡(德国),2 A.I. 芬兰东部 - 芬兰大学 - 芬兰大学(芬兰),4个精神病学和神经心理学系,马斯特里赫特市阿尔茨海默氏症中心 - 马斯特里赫特大学 - 马斯特里奇大学 - 荷兰大学(荷兰)5神经化学,神经科学与生理学研究所,哥德堡大学Sahlgrenska学院 - Mölndal(瑞典),7个临床神经化学实验室,Sahlgrenska大学医院 - 瑞典Mölndal(瑞典)(瑞典),瑞典8号,临床医学研究所,伊斯特兰,伊斯兰教学院,伊斯兰教院,伊斯兰教学院。 Kuopio大学医院神经学系神经中心 - Kuopio(芬兰),10临床老年医学司,Karolinska研究所神经生物学系神经科学系 - Huddinge- Huddinge(瑞典)(瑞典)(瑞典),11个临床试验,临床试验,Karolinska Universitim and Hospital Initial -Hospitimi -Huperigy -Hudinge and Swedeem -Huddinge and Ectede and Ectede and Ectede and Ectede and Ectede and Ectede and Ectede,Ectede and Ectede,Extede and Ectede,Extinge,Externe and Ectede,Externe)健康,帝国学院 - 伦敦(英国)1 DeutschesInstitutfürDemenzPrävention(DIDP),萨尔兰大学医学院 - 霍姆堡(德国),2 A.I.芬兰东部 - 芬兰大学 - 芬兰大学(芬兰),4个精神病学和神经心理学系,马斯特里赫特市阿尔茨海默氏症中心 - 马斯特里赫特大学 - 马斯特里奇大学 - 荷兰大学(荷兰)5神经化学,神经科学与生理学研究所,哥德堡大学Sahlgrenska学院 - Mölndal(瑞典),7个临床神经化学实验室,Sahlgrenska大学医院 - 瑞典Mölndal(瑞典)(瑞典),瑞典8号,临床医学研究所,伊斯特兰,伊斯兰教学院,伊斯兰教院,伊斯兰教学院。 Kuopio大学医院神经学系神经中心 - Kuopio(芬兰),10临床老年医学司,Karolinska研究所神经生物学系神经科学系 - Huddinge- Huddinge(瑞典)(瑞典)(瑞典),11个临床试验,临床试验,Karolinska Universitim and Hospital Initial -Hospitimi -Huperigy -Hudinge and Swedeem -Huddinge and Ectede and Ectede and Ectede and Ectede and Ectede and Ectede and Ectede,Ectede and Ectede,Extede and Ectede,Extinge,Externe and Ectede,Externe)健康,帝国学院 - 伦敦(英国)芬兰东部 - 芬兰大学 - 芬兰大学(芬兰),4个精神病学和神经心理学系,马斯特里赫特市阿尔茨海默氏症中心 - 马斯特里赫特大学 - 马斯特里奇大学 - 荷兰大学(荷兰)5神经化学,神经科学与生理学研究所,哥德堡大学Sahlgrenska学院 - Mölndal(瑞典),7个临床神经化学实验室,Sahlgrenska大学医院 - 瑞典Mölndal(瑞典)(瑞典),瑞典8号,临床医学研究所,伊斯特兰,伊斯兰教学院,伊斯兰教院,伊斯兰教学院。 Kuopio大学医院神经学系神经中心 - Kuopio(芬兰),10临床老年医学司,Karolinska研究所神经生物学系神经科学系 - Huddinge- Huddinge(瑞典)(瑞典)(瑞典),11个临床试验,临床试验,Karolinska Universitim and Hospital Initial -Hospitimi -Huperigy -Hudinge and Swedeem -Huddinge and Ectede and Ectede and Ectede and Ectede and Ectede and Ectede and Ectede,Ectede and Ectede,Extede and Ectede,Extinge,Externe and Ectede,Externe)健康,帝国学院 - 伦敦(英国)
[1] li,xiaojuan和huang,小米。“ VR暴露治疗精神疾病的治疗和发展前景。“心理学杂志,第1卷15,否。3,2023,pp。45-58。[2] Chitale,Vibhav,Playne,Daniel,Liang,Haining和Nilufar的Baghaei。“用于预测心理健康状况的虚拟现实数据。”IEEE混合和增强现实会议,2022年,pp。1-7。[3]艾布拉姆斯,扎拉。“通过VR。“ IEEE PULSE,卷13,否。5,2022,pp。16-20。[4] Nath,Nishu,Zavarelli,Jace,Stanley,Laura等。“在虚拟现实中整合认知行为疗法和心率变异性生物反馈,增强现实,并将现实作为心理健康干预。”IEEE虚拟现实和3D用户界面摘要和研讨会(VRW),2024,pp。1198-1201。[5]负担得起且可访问的心理健康资源的障碍
理解心血管系统操作的重要组成部分是心脏生理学的知识。PITHED青蛙模型是研究不同药物如何影响心脏的流行工具。我们在本实验中的目标是检查三种药物如何影响青蛙的心率和心电图(ECGS):乙酰胆碱,肾上腺素和毛虫。我们还将研究弗兰克(Frank-Starling)的定律,这表明预紧力的增加会导致心脏产量增加。为了执行该项目,我们将获得两个岩石底叶木(American Bullfrog),以道德上钉住并进行实验。第一只青蛙将接受三种药物,而响应每种药物的青蛙的心率和心电图将被测量。第二名青蛙将充当控制青蛙,而无需操纵。此外,我们将改变心脏中的液体体积,并在药理治疗后调整心脏的预努力时测量相应的心输出量。知道每种药物的先前作用,我们假设乙酰胆碱会降低心率,对ECG没有影响,而肾上腺素会增加心率并对ECG产生积极影响。可以预期,毛car骨不会显着影响心率和心电图。此外,我们预计弗兰克·斯塔林(Frank-Starling)的定律将导致心脏产量和预加载量增加。该项目将证明如何将弗兰克·斯塔林定律应用于心血管生理学中,并有助于我们理解这些药物对心脏的生理影响。
[1] Gambetta, Jay M.、Jerry M. Chow 和 Matthias Steffen。“在超导量子计算系统中构建逻辑量子比特。”npj 量子信息 3.1 (2017):2。[2] Grover, Lov K。“一种用于数据库搜索的快速量子力学算法。”第二十八届 ACM 计算理论研讨会论文集。 1996 年。 [3] Qiskit,https://qiskit.org/ [最后访问于 2023 年 9 月 16 日] [4] Qiskit,https://qiskit.org/ecosystem/ibm-runtime/locale/ja_JP/tutorials/Error-Suppression-and-Error-Mitigation.html [最后访问于 2023 年 9 月 16 日] [5] Qiskit,https://qiskit.org/documentation/apidoc/transpiler.html [最后访问于 2023 年 9 月 16 日]
参考数据集的观点。a-b)WRN抑制剂剂量反应曲线横跨900个Prism细胞系(https://github.com/niu-lab/ msisensor2),以及区域范围内curve(auc)和基因组 - 含量 - 含基因组shrna或crispr(xpr)依赖性(xpr)依赖性的相关性,依赖于强度,是强化的良好。c)每个化合物注销的目标对之间的棱镜AUC和shRNA或XPR依赖性之间的相关性(| r |)。XPR依赖性细胞系的比例(概率> 0.5;颜色)反映了部分抑制(SHRNA)可以更好地恢复目标上的关系的实例。d)这些化合物靶向对的最佳全基因组相关等级的分布。e)由254个Prism AUC auc pro填充的成对Pearson相关性产生的UMAP在约900个细胞系中,通过注释化合物颜色,表明生物学信号的总体连贯性。
Torre-Cea I,Guerra-Paes E,Berlana-GalánP,Cáceres-Calle D,Carrera-Aguado I,Marcos-Zazo L,Sánchez-Juanes F,Muñoz-félixJM。 div>萨拉曼卡大学(USAL)和萨拉曼卡生物医学研究所(IBSAL)引言癌症的生物化学和分子生物学系可以从不同的治疗角度来解决癌症,具体取决于其特定特征;其中之一是肿瘤脉管系统,是致癌细胞生长和确定肿瘤微环境所必需的。 div>据此,当血管的形成是由已经形成的其他人形成时,可以将肿瘤归类为血管生成,或者当给出避免血管合成的过程时,肿瘤可以分类为血管生成。 div>提出最严重预后的非血管生成机制,如今似乎是对抗血管生成疗法的抗性是血管共同选择(VCO)。 div>在VCO肿瘤细胞中绑架了先前存在的血液组织血管,在与高度血管化器官相关的肿瘤中可能出现固有或响应不同的治疗方法。 div>这种血管策略中的一个重要点是使用整合素的肿瘤细胞粘附在细胞外基质和血管上,这反过来触发了细胞信号瀑布,从而增加了最严重的致癌特征的表达。 div>这项工作的主要目的是避免整联蛋白β1与配体的结合,以抑制具有这种耐药性的肺转移中的VCO,并使它们更容易受到化学疗法的影响。 div>材料和方法在4T1细胞系的非血管生长的体内BALB/C中进行了三个实验。 div>在其中,使用整合素α5β1:ATN-161,ISODGR和ATN-161的分子抑制剂比较三种治疗方法,并与卡泊蛋白结合使用。 div>该研究基于免疫组织化学和免疫荧光染色,使我们能够量化肿瘤大小,缺氧,血管和肺实质的变化,细胞外基质的纤维,淋巴细胞的纤维T CD8+抗肿瘤。 div>最后,分析了在光学显微镜下拍摄的图像,并进行了统计分析,T-学生和ANOVA。 div>不会改变肺实质,细胞外基质的纤维或淋巴细胞的浸润,但确实会增加这些血管的periticos覆盖范围。 div>在使用ISODGR的第二个模型中,尽管似乎有新容器和缺氧增加,但大小没有变化。 div>更改实质,但保持基质的纤维。 div>增加T CD8+淋巴细胞和periticos覆盖率的浸润。 div>
1 阿尔茨海默氏症协会 - 芝加哥(美国)、2 内华达大学拉斯维加斯分校 - 拉斯维加斯(美国)、3 加利福尼亚大学圣地亚哥分校 - 圣地亚哥(美国)、4 匹兹堡退伍军人医疗保健系统 - 匹兹堡(美国)、5 加利福尼亚大学伯克利分校 - 伯克利(美国)、6 圣路易斯华盛顿大学医学院 - 圣路易斯(美国)、7 伦敦大学学院 - 伦敦(英国)、8 阿姆斯特丹大学医学中心 - 阿姆斯特丹(荷兰)、9 隆德大学 - 隆德(瑞典)、10 麻省总医院 - 波士顿(美国)、11 印第安纳大学医学院 - 印第安纳波利斯(美国)、12 耶鲁大学医学院 - 纽黑文(美国)、13 加利福尼亚大学旧金山分校 - 旧金山(美国)、14 匹兹堡大学医学院 - 匹兹堡(美国)