适当的皮质层压对于认知,学习和记忆至关重要。在体感皮质中,以层状特异性方式详细介绍了锥体式神经元,以决定突触伴侣和整体纤维组织。在这里,我们利用男性和雌性小鼠模型,单细胞标记和成像方法来识别层状特异性侧支的内在调节剂,也称为间隙,轴突分支。我们为II/III层锥体神经元的稳健,稀疏,标记开发了新方法,以获得轴突分支形态的单细胞定量评估。,我们将这些方法与细胞自主的功能丧失(LOF)和过表达(OE)在体内候选筛查中结合在一起,以鉴定皮质神经元轴突分支层压板的调节剂。我们将细胞骨架结合蛋白DREBRIN(DBN1)的作用赋予调节II/III层皮质投射神经元(CPN)侧面轴突在体外的调节中的作用。LOF实验表明,DBN1是抑制II/III层CPN侧支轴突分支在IV层中的伸长的必要条件,在其中,通常不存在轴突通过II/III层CPN分支的轴突分支。相反,DBN1 OE产生过量的短轴突突起,让人联想到未能拉长的新生轴突侧支。结构 - 功能分析暗示DBN1 S142磷酸化和DBN1蛋白结构域已知可介导F-肌动蛋白捆绑和微管(MT)耦合,作为DBN1 OE时侧支分支的必要条件。综上所述,这些结果有助于我们理解调节兴奋性CPN中侧支轴突分支的分子机制,这是新皮层回路形成的关键过程。
生成模型的进步最近彻底改变了机器学习。与此同时,在神经科学中,长期以来一直认为生成模型是动物智能的基础。了解支持这些过程的生物学机制有望阐明生物学和人工智能之间的关系。在动物中,海马形成被认为可以学习和使用生成模型来支持其在空间和非空间记忆中的作用。在这里,我们介绍了海马形成的生物学上合理模型,该模型将我们应用于输入时间流的Helmholtz机器。我们模型的一个新成分是,快速的theta波段振荡(5-10 Hz)门是整个网络中信息流的方向,训练它类似于高频唤醒式睡算法。我们的模型可以准确地渗透高维感觉环境的潜在状态,并产生逼真的感觉预测。此外,它可以通过开发匹配以前的理论建议并在环境之间的环境传递此结构来学会通过开发环形连接结构来学习集成的路径。虽然许多模型具有一般性的生物学合理性,但我们的模型在一个生物学上合理的局部学习规则下捕获了各种海马认知功能。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2024年6月28日发布。 https://doi.org/10.1101/2024.06.23.598940 doi:Biorxiv Preprint
Paul S. Muhle-Karbe,1,2,3,3,10,12, * Hannah Sheahan,1,4,10 Giovanni Pezzulo,5 Hugo J. Spiers,5 Hugo J. Spiers,6 Samson Chien,7 Nicolas W. Schuck,7 Nicolas W. Schuck,7,8,9,9,9,9,11和Christopher Summer summer filld 1,3,3,11,3,3,11, *伯明翰大学心理学,伯明翰B15 2SA,英国3人类脑健康中心,伯明翰大学,伯明翰大学,伯明翰B15 2SA,英国4 Google DeepMind,伦敦EC4A 3TW,英国5认知科学和技术研究所Neurocode,Max Planck人类发展研究所,14195德国柏林8 Max Planck UCL计算精神病学与老化研究中心,14195德国柏林9号,柏林9学院,汉堡大学,20146年,德国汉堡,汉堡,汉堡10.这些作者10.这些作者贡献了11个高级作者12领导人的接触。 (P.S.M.-K。),Christopher.SummerField@psy.ox.ac.uk(C.S.)https://doi.org/10.1016/j.neuron.2023.08.021https://doi.org/10.1016/j.neuron.2023.08.021
microRNA(miRNA)是与发育和疾病的许多方面相关的简短非编码和保存良好的RNA。microRNA控制与不同生物过程相关的基因的表达,并在许多基因的和谐表达中起着重要的作用。在中枢神经系统的神经发育过程中,miRNA在时空受到调节。在成熟的大脑中,miRNA的动态表达继续持续,突出了它们在神经元中的功能重要性。作为关键的大脑结构之一,海马是大脑主要功能连接的关键组成部分。海马中的基因表达异常导致神经发生,神经成熟和突触形成的扰动。这些干扰是几种神经系统疾病和行为缺陷的根源,包括阿尔茨海默氏病,癫痫和精神分裂症。有强有力的证据表明,miRNA中的异常是通过离子通道的不平衡活性,神经元兴奋性,突触可塑性和神经元凋亡来在海马中的神经退行性机制中造成的。一些miRNA会影响海马中的氧化应激,炎症,神经分化,迁移和神经发生。此外,神经变性中的主要信号传导级联反应,例如NF-Kβ信号传导,PI3/AKT信号传导和Notch途径,由miRNA密切调节。这些观察结果表明,MicroRNA是海马基因调节网络中的重要调节剂。在当前的综述中,我们着重于海马正常发育和神经发生的miRNA功能作用。我们还考虑海马中的miRNA对于病理生理途径中的基因表达机制至关重要。
8/18/23 Sertraline通过Sigma 1受体,细胞应激和神经类固醇Yukitoshi Izumi,医学博士调节海马可塑性和学习。 1,2,Angela M. Reiersen,医学博士1,2,Eric J. Lenze,M.D。1,2,史蒂文·J·梅纳里克(Steven J. Mennerick)博士1,2&Charles F. Zorumski,M.D。 1,2 1精神病学和泰勒家族研究所的创新精神研究研究2心情障碍中心研究中心华盛顿大学医学院圣路易斯莫跑跑点:索特拉林和海马函数关键词:Allopregnanolone,Allopregnolonolone,5-Alpha降低,长期降低,长期的效果,蜂窝胁迫,蜂窝压力,NMDA COUNTORS:236 COUNT:236)简介(456);主文本(4292)通讯:查尔斯。 F. Zorumski,M.D。 精神病学系华盛顿大学医学院660 South Euclid Avenue St. Louis MO 63110电话:314-747-2680电子邮件:zorumskc@wustl.edu1,2,史蒂文·J·梅纳里克(Steven J. Mennerick)博士1,2&Charles F. Zorumski,M.D。1,2 1精神病学和泰勒家族研究所的创新精神研究研究2心情障碍中心研究中心华盛顿大学医学院圣路易斯莫跑跑点:索特拉林和海马函数关键词:Allopregnanolone,Allopregnolonolone,5-Alpha降低,长期降低,长期的效果,蜂窝胁迫,蜂窝压力,NMDA COUNTORS:236 COUNT:236)简介(456);主文本(4292)通讯:查尔斯。F. Zorumski,M.D。精神病学系华盛顿大学医学院660 South Euclid Avenue St. Louis MO 63110电话:314-747-2680电子邮件:zorumskc@wustl.edu
。cc-by-nc 4.0国际许可证未获得同行评审的认证)是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
在出生后的前两周,啮齿动物的神经元内氯离子浓度逐渐下降,导致 GABA 反应从去极化转变为高极化。在神经发育障碍的啮齿动物模型和人类患者中,出生后的 GABA 转变会延迟,但 GABA 转变延迟对发育中大脑的影响仍不清楚。在这里,我们通过用氯离子输出蛋白 KCC2 的特异性抑制剂 VU0463271 处理 6 至 7 日龄小鼠的器官型海马培养物 1 周,研究了出生后 GABA 转变延迟对网络发育的直接和间接影响。我们证实了 VU 治疗延迟了 GABA 转变并使 GABA 信号去极化直到 DIV9。我们发现 VU 治疗后 DIV9 时的兴奋性和抑制性突触的结构和功能发育没有受到影响。与之前的研究一致,我们观察到 GABA 信号在对照组和 VU 处理的出生后切片中已经受到抑制。令人惊讶的是,在 VU 治疗结束 14 天后(DIV21),我们观察到 CA1 锥体细胞中自发抑制性突触后电流的频率增加,而兴奋性电流没有改变。突触数量和释放概率不受影响。我们发现,与对照切片相比,放射层中以树突为靶向的中间神经元具有升高的静息膜电位,而锥体细胞的兴奋性较低。我们的结果表明,去极化 GABA 信号不会促进 P7 后的突触形成,并表明出生后细胞内氯离子水平以细胞特异性的方式间接影响膜特性。
©2023作者,根据美国老化协会的独家许可。保留所有狂欢。该文章的此版本已被接受,在同行评审后被接受,并受到Springer Nature AM使用条款的约束,但不是记录的版本,也不反映后接受后的改进或任何更正。记录版本可在线获得:http://dx.doi.org/10.1007/s11357-023-00780-y。
发现和表征丝氨酸 - 硫代激酶细胞周期蛋白依赖激酶样5(CDKL5)的特定抑制剂(CDKL5)在海马CA1生理学中的作用Anna Castano*科罗拉多大学医学院,科罗拉多州Aurora,Co anna.castano and brinase ins naberatory* coinschud silgaux silveest and karga silvester*弗朗西斯·克里克研究所(Francis Crick InstituteWells Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America carrow.i.wells@gsk.com Jennifer L. Sanderson Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO JENNIFER.SANDERSON@CUANSCHUTZ.EDU Carla A. Ferrer结构基因组学联盟,UNC Eshelman药学院,北卡罗来纳大学,北卡罗来纳州教堂山的教堂山,27599年,美利坚合众国calafe2@hotmail.2@hotmail.com han wee ong结构性基因组联盟,北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州,Chapel山,Chapel 9. onghw@live.unc.unc.edu yi liang结构基因组学联盟,UNC Eshelman药学院,北卡罗来纳大学北卡罗来纳州教堂山的北卡罗来纳大学,北卡罗莱纳州教堂山,27599年,美国美国诺夫德·理查森(William Richardson)的美国诺夫尔·理查森(William Richards)医学界,美国纳菲尔德·诺夫(Oxford),美国诺夫·理查森(William Richardson) william.richardson95@outlook.com乔西·A·西尔瓦洛里(Josie A.卡罗来纳州,27599年,美利坚合众国。