活性依赖性转录因子MEF2C中的突变与几种神经精神疾病有关。在其中表现出自闭症谱系障碍(ASD)相关的行为置换。具有MEF2C突变的多种动物模型提供了令人信服的证据,表明MEF2C确实是ASD基因。然而,对MEF2C种系或全球脑敲除的小鼠的研究的能力有限,可以识别表达MEF2C介导的ASD行为所需的精确神经底物和细胞类型。鉴于海马神经发生在认知和社会行为中的作用,在这项研究中,我们旨在研究MEF2C在新近产生的齿状颗粒细胞(DGC)中的作用和功能中的作用。MEF2C(MEF2C OE)的过表达在祖细胞阶段捕捉了神经发生的过渡,如MEF2C OE DGC中SOX2 +的持续表达所表明。MEF2C(MEF2C CKO)的条件敲除允许MEF2C CKO细胞的神经元承诺;但是,MEF2C CKO不仅损害了树突状植物和脊柱形成,而且还损害了MEF2C CKO DGC的突触传播。此外,MEF2C CKO的异常结构和功能
脑转移(BM)是成年人中最常见的颅内肿瘤,占所有脑肿瘤的一半以上。BM的发生率稳步增加,这主要是由于综合癌症护理的进步,通过改进的全身治疗方法更好地控制颅外疾病,并使用更易于访问的磁共振成像来增强对小转移的检测。估计BM在固体恶性肿瘤的成年患者中最多发生(1)。因此,BM的患病率和发病率不断上升,使BM成为一个重要的社会和健康问题。直到最近,由于治疗选择有限,BM通常以标准化的方式进行治疗,全脑放射疗法(WBRT)是数十年来的主要治疗方法。当前的BM治疗方法包括手术,立体定向放射外科(SRS),WBRT,化学疗法和现代靶向疗法(2)。尽管近年来WBRT在脑转移患者中的作用已经发展,并且其使用量也有所下降,但WBRT仍然是大多数多个BM患者的标准治疗中至关重要的工具(3)。放射疗法总体上已经取得了显着的进步,但近几十年来,WBRT本身并没有发生重大变化。长期以来,人们已经认识到,WBRT会对中枢神经系统产生严重的,不可逆的副作用。对于接受WBRT的BM患者而言,神经认知功能障碍已成为越来越重要的关注点。尽可能长时间地保留良好的生活质量(QOL),并最大程度地减少治疗的潜在医源性副作用,这是当前的首要任务,不仅在姑息治疗中(4)。尽管BM患者的认知障碍可能受到多种因素的影响,但海马后辐射变化被认为是影响神经认知功能(NCF)(尤其是记忆)的主要因素之一,尤其是记忆,最终是整体质量质量质量质量(5-7)。本文介绍了有关辐射诱导的位于海马亚晶体区域的神经祖细胞损害的临床和临床前数据,及其对辐射引起的神经认知下降的影响,特别是在短期记忆形成和
记忆形成需要协调控制基因表达,蛋白质合成和泛素 - 蛋白酶体系统(UPS)介导的蛋白质降解。UPS的催化成分,26S蛋白酶体包含由两个19S调节帽的20S催化核心,以及在丝网上120(PRPT6-S120)的19S CAP调节子基RPT6的磷酸化已广泛与控制活性依赖性依赖性依赖性蛋白酶体活动有关。最近,还显示RPT6在记忆形成期间在海马中具有类似转录因子的作用的蛋白酶体外作用。然而,对于大脑中“ Free” RPT6的蛋白酶体无关函数,在记忆形成期间以及该转录控制功能是否需要S120的磷酸化。在这里,我们使用了RNA测序以及新型的遗传方法以及生化,分子和行为测定方法来检验以下假设:PRPT6-S120在内存形成过程中prpt6-S120的独立性独立于蛋白酶体来结合DNA并调节基因表达。rNA介导的siRNA介导的自由RPT6敲低后的序列显示,在恐惧状态下,男性大鼠的背侧海马中有46个基因靶标,其中RPT6参与转录激活和抑制。通过RISPR-DCAS9介导的RPT6在靶基因上的人工放置,我们发现单独的RPT6 DNA结合对于改变学习后改变基因表达可能很重要。此外,CRISPR-DCAS13介导的S120转化为RPT6上的甘氨酸表明,S120处的磷酸化是RPT6结合DNA并在记忆形成过程中正确调控转录的必要条件。一起,我们揭示了RPT6在控制记忆形成过程中控制基因转录中磷酸化的新功能。
在大脑中,海马回路对于认知性能(例如记忆)至关重要,并且在病理条件下受到了深远影响(例如,表演,阿尔茨海默氏症)。专门的分子机制调节海马电路函数的不同细胞类型。其中,大麻虫受体表现出各种作用,具体取决于细胞类型(例如,neu-ron,神经胶质细胞)或亚细胞细胞器(例如线粒体)。确定在局部细胞和亚细胞水平上激活大麻素触发的作用部位和精确机制,有助于我们了解海马病理生理态。这样做,过去和当前的研究都提高了我们对大麻素功能的了解,并提出了潜在疗法的新型途径。通过在这项工作中概述这些数据,我们旨在展示当前发现并突出海马电路中大麻素受体1型(CB1)定位/激活的病理生理影响。
产前酒精暴露(PAE)对其对神经发育,突触可塑性和认知结果的深远影响进行了广泛的研究。虽然Pae,尤其是在中等水平的情况下,对暴露的个体具有长期的认知意义,但我们对这些定义的确切机制的理解仍然存在很大的差距。本综述提供了一个框架,以理解受PAE负面影响的学习和记忆过程的神经生物学基础。性别差异,不同的PAE方案和暴露时间被探讨,因为潜在的变量影响了PAE在长期增强方面的多样化结果(LTP)。此外,还审查了药理学和非药理的潜在干预措施,提供了有希望的途径来减轻PAE对认知过程的有害影响。尽管已经取得了显着的进步,但需要进一步的研究来增强我们对产前酒精暴露如何影响神经可塑性和认知功能的理解,并为受影响的人开发有效的治疗干预措施。最终,这项工作旨在提高对PAE对大脑和认知功能的后果的理解。
研究文章| Cellular/Molecular Phosphorylation of RPT6 controls its ability to bind DNA and regulate gene expression in the hippocampus of male rats during memory formation https://doi.org/10.1523/JNEUROSCI.1453-23.2023 Received: 1 August 2023 Revised: 31 October 2023 Accepted: 29 November 2023 Copyright © 2023 the authors
阿尔茨海默氏病是一种复杂的神经退行性疾病,导致认知功能和心理健康的下降。最近的研究将肠道微生物群定位为阿尔茨海默氏病的重要敏感性因子,通过在阿尔茨海默氏症患者的肠道微生物组组成和啮齿动物模型中表现出特定的变化。然而,尚不清楚肠道菌群改变在阿尔茨海默氏症症状的表现中是否是因果关系。了解阿尔茨海默氏症患者的肠道菌群参与宿主生理和行为,我们从阿尔茨海默氏病的患者中移植了粪便菌群,并将年龄匹配的健康对照组件转移到贫血的年轻成年大鼠中。我们发现依赖于成人海马神经发生的行为损害,这是阿尔茨海默氏病患者的患者移植引起的某些记忆功能和情绪的重要过程。值得注意的是,损伤的严重程度与供体患者的临床认知评分相关。大鼠盲肠和海马代谢组的离散变化也是Evi dent。由于无法在活着的人类中测量海马神经发生,但受到循环系统环境的调节,我们评估了阿尔茨海默氏症的系统环境对代理神经发生读数的影响。来自阿尔茨海默氏症患者的血清在体外人类细胞中的神经发生降低,与认知评分和关键微生物属有关。在体外人类细胞中的神经发生降低,与认知评分和关键微生物属有关。Our findings reveal for the first time, that Alzheimer's symptoms can be transferred to a healthy young organism via the gut microbiota, confirming a causal role of gut microbiota in Alzheimer's disease, and highlight hippocampal neurogen esis as a converging central cellular process regulating systemic circulatory and gut-mediated factors in Alzheimer's.
箭头分别标记2,1(V bial = -2.0 V / -1.2 V,i = -50 pa / -200 pa)。c,来自282
摘要:糖尿病与认知功能障碍的关联至少有60年的历史,这始于观察到,患有1型糖尿病的儿童(T1D)具有低血糖症的复发性发作,因此对大脑的葡萄糖供应反复发作,并显示出对大脑的低葡萄糖供应。后来,老年人群中2型糖尿病(T2D)和痴呆症的发生率的增长表明它们的高相关性,尽管高血糖过度血糖,但神经元葡萄糖供应降低也被认为是关键机制。在这里,我们讨论了葡萄糖在神经元功能/保存中的作用,以及周围血糖如何进入神经元细胞内室,包括精美的葡萄糖 - 跨血脑屏障(BBB)的精美葡萄糖 - 葡萄糖转运蛋白的复杂网络,例如dementia-emporter intippampus。此外,胰岛素抵抗诱导的肥胖/T2D患者海马异常,例如炎性应激,氧化应激和线粒体应激,高级糖化的最终产物和BBB功能障碍的产生增加,以及它们与dementia/alzheimer'sise ofdered erseed issered,seassed。最后,我们讨论了这些异常是如何伴随着高容量胰岛素敏感的葡萄糖转运蛋白GLUT4在海马神经元中的表达和易位的,这导致神经性糖性肿瘤症并最终导致认知功能障碍。这些知识应进一步鼓励对有希望的治疗方法的有益作用进行调查,这些方法可以改善中央胰岛素敏感性和GLUT4表达,从而使糖尿病相关的认知功能障碍。
沈伟达 1,6,∗ ,唐叶娇 1,2,6 ,杨菁 1,6 ,朱林静 1,6 ,周文 1 ,项丽阳 2 3,4 ,朱峰 1 ,董静银 1 ,谢逸程 5 ,曾令辉 1,∗ 3 4 1 杭州城市学院医学院浙江省神经修复新靶点与药物研究重点实验室,杭州 310015,浙江 6 2 浙江大学药学院毒理药理研究所,卫生部医学神经生物学重点实验室,杭州 310058,浙江 9 3 浙江省神经电子与脑机接口技术重点实验室,杭州 311121,浙江 11 4 南开大学医学院,天津 300071 12 5 浙江大学医学院儿童医院神经内科、国家儿童保健临床研究中心,杭州 310052,中国 15 16 17 6 这些作者对本文贡献相同。18 ∗ 通讯作者:曾令辉 (zenglh@hzcu.edu.cn),沈伟达 19 ( shenwd@hzcu.edu.cn ) 20