引言 胰腺是一种独特的器官,由外分泌组织和内分泌组织组成,前者产生消化酶,后者分泌代谢激素。胰腺大部分由外分泌组织组成,形成胰岛的内分泌细胞仅占该器官的 1%–2%。自 1932 年首次描述胰岛血液供应 (1) 以来,胰岛一直被认为是一个封闭的微器官,接受专门的小动脉 (2–6)。根据这一模型,血液流经与外分泌成分完全分离的胰岛或形成胰岛素腺泡门脉系统,然后从 1 个或多个小静脉流出。事实上,不同的科学界对胰腺的外分泌和内分泌部分进行了研究,治疗胰腺外分泌和内分泌疾病的医生也来自不同的医学领域:分别是胃肠病学家和内分泌学家。值得注意的是,目前尚不清楚这两个系统为何会合并为一个器官。在缺乏外分泌胰腺的胰腺相关转录因子 1a 缺陷 (Ptf1a 缺陷) 小鼠中,内分泌细胞会归巢到脾脏 (7)。有趣的是,这些细胞分散在整个脾脏中,这表明外分泌组织不是内分泌细胞存活所必需的,但却是胰岛形成所必需的。在表达 Pdx1-Kras 的 ob/ob 小鼠中,肥胖导致胰岛细胞中胆囊收缩素 (CCK) 表达异常,这
Honeybees用蜂面包而不是蜂蜜和花粉来营养。因为花蜜和花粉在被蜜蜂食用之前都经历了一些生化变化。虽然蜜蜂带入蜂巢的花粉被填充到蜂窝细胞中,但蜜蜂分泌物中的蜂蜜,有机酸和消化酶被添加到花粉中(Deveza等人。2015)。然后,由细菌引起的乳酸发酵发生在厌氧条件下。发酵的一个重要原因是花粉的外层(外部)溶解以及花粉内部营养素的易于吸收。因此,发酵过程不仅用于保留花粉含量,还可以形成新的化合物。在发酵过程中,蜜蜂花粉蛋白被分解为肽和氨基酸。degrandi -Hoffman(2013)报告说,花粉的蛋白质浓度高于蜂面包,而氨基酸浓度较低。在另一项研究中,发现蜜蜂面包中的乳酸浓度比花粉高6倍(Nagai等人。2005)。 还报道说,蜜蜂面包中含有维生素K,在新鲜花粉中未发现,在B族维生素中更丰富(Gilliam 1979a,b)。2005)。还报道说,蜜蜂面包中含有维生素K,在新鲜花粉中未发现,在B族维生素中更丰富(Gilliam 1979a,b)。
外分泌胰腺功能不全(EPI)的特征是胰腺合成不足或消化酶的释放,这会损害消化并引起营养 - 吸收不良。要有效地管理伴随的全身性疾病并提供个性化治疗,早期识别至关重要。消化系统的产生是EPI过程中的关键组成部分,它与胰腺癌,囊性纤维化,慢性胰腺炎和与糖尿病相关的纤维化等多种疾病有关。其他原因包括衰老,吸烟,炎症性肠病(IBD)和胃部清除。外分泌胰腺功能不全会导致腹腔疾病的长时间腹泻,可能导致胰腺炎和自身免疫性过程。具有涉及炎症,胆管疤痕,胰腺自身抗体和肠外表现的机制,IBD中的EPI患病率是值得注意的。用于EPI的诊断和直接直接测试,以及秘密蛋白诱导的磁共振胆管造影术成像提供了彻底的评估。对生活方式的修改,诸如胰酶替代疗法之类的疗法方式以及遗传疾病的创新疗法都是管理层的一部分。胰酶替代治疗很重要,因为微量营养素的特征(包括钙,镁,锌和维生素)存在于EPI患者中。创新治疗研究机器学习和PARP酶是出于乳酸和诊断目的,从而提高了全身性疾病中更准确的EPI诊断和治疗。
引入α-淀粉酶(EC 3.2.1.1)是消化酶,催化淀粉中内部α-1,4-糖苷链接的水解至较低的分子量产物,例如葡萄糖,麦芽糖和麦芽糖三糖单位。人α-淀粉酶主要在唾液腺和胰腺中表达。这两个同工酶在其催化结构域中具有高度的原发性氨基酸序列相似性(97%)和92%。此外,两种α-淀粉酶在与多克隆抗体的反应上都是免疫学上相同的,具有相同的作用方式,首选底物,是氯激活的,并且在相似的pH值下达到最大活性。在功能上,当用各种底物测试时,它们具有相似但不相同的切割模式。调节α-淀粉酶活性会影响碳水化合物作为能源的利用。 该酶负责人类复杂碳水化合物的分解。 因此,抑制α-淀粉酶可以被视为治疗与碳水化合物摄取有关的疾病的策略,例如糖尿病,肥胖,牙齿腔和牙周疾病。 α-淀粉酶抑制剂筛选试剂盒(比色)(AB283391)可用于筛选/表征α-淀粉酶的潜在抑制剂。调节α-淀粉酶活性会影响碳水化合物作为能源的利用。该酶负责人类复杂碳水化合物的分解。因此,抑制α-淀粉酶可以被视为治疗与碳水化合物摄取有关的疾病的策略,例如糖尿病,肥胖,牙齿腔和牙周疾病。α-淀粉酶抑制剂筛选试剂盒(比色)(AB283391)可用于筛选/表征α-淀粉酶的潜在抑制剂。
简单总结:各种日常生活用品(包括食品)中氧化石墨烯和银纳米粒子(分别为 GO 和 AgNP)的存在或污染日益增多,这增加了它们对消化功能产生有害影响的风险,从而影响生物体的营养和能量摄入。该研究通过考虑不同的 NP 浓度和暴露时间来解决这个问题。由于相关数据稀缺,因此需要进行此类研究才能可靠地评估 NP 的影响。这项针对模型昆虫物种——成年家蟋蟀的研究揭示了肠道中消化酶活性的变化,主要是当食物中存在高含量的 NP 时:刺激碳水化合物和脂质的消化,但抑制蛋白质的消化。这些变化在用 AgNP 处理的昆虫中比在用 GO 处理的昆虫中更明显,并且随着暴露时间的延长而增加。在用 AgNP 处理的蟋蟀中,消化紊乱导致食物消耗随着暴露时间的延长而减少。食物吸收也受到了影响——与对照组相比,暴露于最低浓度和中等浓度AgNPs的蟋蟀的累积食物吸收量(CFA)分别较高和较低。这些发现证实了食物中低浓度NPs的影响微弱或没有影响,并揭示了较高浓度的NPs可能会对消化过程以及由此产生的营养和能量摄入产生不利影响,尤其是在生物体长期暴露于AgNPs的情况下。
肠道微生物组有望实现这些目标,并以特别关注罗非鱼的特定关注来实现水产养殖部门,这在最近的研究中引起了人们的关注。益生菌是在适当水平下施用的活微生物,可以促进动物中平衡的肠道菌群。这可以产生病原体防御,改善消化,增长增长以及罗非鱼的存活率提高。益生菌正在作为促进罗非鱼和其他鱼类健康肠道环境的工具,具有积极影响肠道结构,生态系统,生长和抗病性的潜力。罗非鱼与其肠道菌群之间的动态相互作用引起了极大的关注,影响了罗非鱼的健康,表现和整体福祉。本综述汇编了有关益生菌对罗非鱼肠道生态系统,形态学结构和酶促活性的影响的研究结果。它概述了它们对罗非鱼中肠道菌群组成的影响,证明了它们增加有益细菌的能力,同时降低致病性菌株。益生菌可以增强罗非鱼的肠形态,从而促进绒毛发育,杯状细胞密度和粘液层厚度。此外,它们会影响罗非鱼的消化酶活性,从而改善了营养吸收和罗非鱼的生长。尽管这一领域正在不断发展,但解密益生菌与罗非鱼肠道复杂相互作用的进展强调了其在推进罗非鱼水产养殖实践方面的潜在好处。关键字:益生菌;鱼和贝类;肠道菌群;肠;组织学;形态学;消化
微生物居住在反刍动物的胃肠道中,并通过维持肠道健康来调节身体代谢。胃肠道健康状态不仅受到最佳发育和生理结构完整性的宏观因素的影响,而且还受到微级别的肠道菌群和免疫状态之间的微妙平衡。在年轻反刍动物中突然断奶会导致肠道的不完整发展,导致不稳定且不形成的微生物群。突然的断奶还引起了肠道微生态稳态的损害,导致肠道感染和疾病,例如腹泻。最近,已经研究了营养和功能性酵母菌培养以解决这些问题。在此,我们总结了肠道微生物与年轻反刍动物体之间的当前已知相互作用,然后我们讨论了使用酵母培养作为饲料补充剂的调节作用。酵母培养物是一种微生态制剂,其中含有酵母,富含酵母代谢物和其他营养活性成分,包括β-葡聚糖,曼南,消化酶,氨基酸,矿物质,矿物质,维生素,以及其他未知的生长因子。它通过提供特殊的营养底物来支持肠功能,刺激肠粘膜上皮细胞的增殖和肠道微生物的繁殖。此外,β-葡聚糖和曼南人有效刺激肠道粘膜免疫,促进免疫反应,激活巨噬细胞并增加酸性磷酸酶水平,从而提高人体对几种疾病的抵抗力。将酵母培养物纳入年轻反刍动物的饮食中,大大减轻了对胃肠道压力的损害,这也起着有效的策略来促进肠道菌群的平衡,肠道组织的发展和粘膜免疫系统的建立。我们的评论为在年轻反刍动物的饮食中应用酵母菌培养提供了理论基础。
肥胖和超重状况分别或与II型糖尿病(T2DM)共同发生,现在在全球范围内发生,整个工业化社会的发病率令人震惊。1-4无序的胃生理学是糖尿病中的常见观察结果,包括T2DM早期快速排空的过程和T2DM和类型1型的后期,胰岛素依赖性糖尿病(IDDM)的过程。5肽激素淀粉蛋白与胰岛素共同分泌,以响应餐食,并促进代谢作用,这些作用通常与胰岛素的互补作用,并且两种激素都在T2DM和胰岛素抵抗中无序。6此外,加速胃排空的常见的SIRT-1动作也可能导致胃功能的失调,包括T2DM中的食欲。7-9因此,胰岛素分泌和组合调节功能的损害通常也会以Amylin分泌和SIRT1动作的畸变反映。6-9包括淀粉蛋白的各种激素作用中,激素通常有助于通过位于胃上皮的Antrum上的淀粉蛋白受体的胃排空生理过程,在此有效地延迟了胃空的一致性和时机。6激活后,链淀粉蛋白受体调节酸辣椒消化剂从胃到近端十二指肠的时机和过渡,然后消化剂可以暴露于腔葡萄糖酶和胰腺中和成分和消化酶。6相比,在IDDM中,因此,与SIRT1作用共同调节淀粉蛋白受体活性的失调可能导致T2DM和IDDM糖尿病形式的胃功能失调。5-9此外,肥胖和T2DM的高胰岛素血症和高氨基血症至少在某种程度上导致了胰岛素和氨基蛋白耐药性现象,因为它在这些条件下通过激素受体受体活性的原发性或次要下调在这些条件下发生。
胰腺是人体内的器官,它分泌多种激素,包括胰岛素和胰高血糖素,以及有助于分解食物的消化酶。胰岛素是人体需要的一种激素,它能将血液中的葡萄糖输送到细胞中,葡萄糖用于提供能量。糖尿病是一种胰岛素分泌受损和不同程度的胰岛素抵抗的疾病,会导致高血糖症(血液中的葡萄糖水平高)。当胰腺产生很少或根本不产生调节血糖所需的胰岛素时,就会发生 1 型糖尿病。当胰腺无法产生足够的胰岛素或人体对现有的胰岛素产生抵抗时,就会发生 2 型糖尿病。无论哪种类型的糖尿病,治疗的目标都是将血糖水平保持在目标范围内。血糖控制不佳会导致许多急性和慢性并发症,其中一些并发症可能会危及生命。连续血糖监测系统 (CGMS) 是一种微创或非侵入性设备,可频繁测量间质液中的葡萄糖水平。 CGMS 旨在获取有关血糖水平昼夜变化模式的信息,当医生实时评估或回顾性审查时,这些信息可以指导治疗调整,以改善整体血糖控制。塔夫茨健康计划使用联邦医疗保险和医疗补助服务中心 (CMS) 和 MassHealth 的指导来为其双重产品合格计划成员确定保险范围,并使用 CMS 为其医疗保险优势计划成员确定保险范围。CMS 全国保险范围确定 (NCD)、地方保险范围确定 (LCD)、地方保险范围条款 (LCA) 以及包含在医疗保险手册和 MassHealth 医疗必要性确定中的文档是确定保险范围的基础(如有)。对于计划的成员,使用以下标准:LCD - 血糖监测仪 (L33822) (cms.gov)
引言糖尿病(DM)是一种严重,慢性且复杂的疾病,其特征是由于无效使用激素胰岛素或激素胰岛素的产生不足而导致高血糖水平。在临床上,高血糖症是由于胰岛素缺乏或不足而引起的,胰岛素的不足或激素可以使循环葡萄糖转化为细胞中的能量。1个糖尿病分为4个亚类:1型,类型2,由于其他原因(例如新生儿糖尿病)和妊娠糖尿病引起的特定糖尿病。2今天,DM的患病率正在增加。 这种情况是世界上最重要的健康问题之一,它导致其维持其人口。 世界卫生组织报告说,有6.4%的成年人口患有糖尿病。 预计2030年有7.8%的DM,但今天的速度已超出了预期。 尽管大多数被诊断为2型DM,但人们认为8.3%的人口被认为是被诊断为DM的个体。 2,3心血管死亡率和发病率通过DM的存在引起的肾病,神经病和视网膜病变而增加。 游离氧自由基的前提,血清蛋白的变化,内皮功能障碍以及肝脏产生的急性相蛋白的变化在这些并发症的形成中起作用。 4可以控制DM及其并发症,患者在适当营养,定期运动,血糖控制,使用适当的药理学治疗以及对所使用治疗的影响和副作用的认识的成分方面的意识对患者的欢迎很重要。2今天,DM的患病率正在增加。这种情况是世界上最重要的健康问题之一,它导致其维持其人口。世界卫生组织报告说,有6.4%的成年人口患有糖尿病。预计2030年有7.8%的DM,但今天的速度已超出了预期。尽管大多数被诊断为2型DM,但人们认为8.3%的人口被认为是被诊断为DM的个体。2,3心血管死亡率和发病率通过DM的存在引起的肾病,神经病和视网膜病变而增加。 游离氧自由基的前提,血清蛋白的变化,内皮功能障碍以及肝脏产生的急性相蛋白的变化在这些并发症的形成中起作用。 4可以控制DM及其并发症,患者在适当营养,定期运动,血糖控制,使用适当的药理学治疗以及对所使用治疗的影响和副作用的认识的成分方面的意识对患者的欢迎很重要。2,3心血管死亡率和发病率通过DM的存在引起的肾病,神经病和视网膜病变而增加。游离氧自由基的前提,血清蛋白的变化,内皮功能障碍以及肝脏产生的急性相蛋白的变化在这些并发症的形成中起作用。4可以控制DM及其并发症,患者在适当营养,定期运动,血糖控制,使用适当的药理学治疗以及对所使用治疗的影响和副作用的认识的成分方面的意识对患者的欢迎很重要。尤其是,就患者遵守治疗而言,终身用药是最重要的组成部分之一。5关于DM治疗和护理及其并发症的支出正在迅速增加,并严重降低了个人的生活质量。对患者的血糖控制对于预防长期微血管并发症至关重要。 6当前,已经开发出各种药理剂来提供血糖控制。 这些药物通过抑制各种葡萄糖转运蛋白和碳水化合物消化酶,并通过过氧化物酶体增殖物激活受体激活来降低血糖水平。 葡萄糖转运蛋白(GLUT)和钠 - 葡萄糖辅助转运蛋白家族作为当前方法脱颖而出,因为它们是参与葡萄糖转运的蛋白质。 7-9在这种情况下,科学家继续进行研究,以进一步研究现有药物的机制并开发新的治疗方法。 关于DM及其并发症的研究的普及也使DM实验方法流行。 这些实验方法可以在体内或体外设计,可以专门用于DM亚型。 每个对患者的血糖控制对于预防长期微血管并发症至关重要。6当前,已经开发出各种药理剂来提供血糖控制。这些药物通过抑制各种葡萄糖转运蛋白和碳水化合物消化酶,并通过过氧化物酶体增殖物激活受体激活来降低血糖水平。葡萄糖转运蛋白(GLUT)和钠 - 葡萄糖辅助转运蛋白家族作为当前方法脱颖而出,因为它们是参与葡萄糖转运的蛋白质。7-9在这种情况下,科学家继续进行研究,以进一步研究现有药物的机制并开发新的治疗方法。关于DM及其并发症的研究的普及也使DM实验方法流行。这些实验方法可以在体内或体外设计,可以专门用于DM亚型。每个