液晶 (LC) 分子的超分子自组装引起了广泛关注,因为这些动态和自组织结构可以诱导各种高级功能,如传输、信息、传感、驱动、光功能和生物功能。分子结构的设计和分子相互作用的控制是获得高功能液晶纳米组装的关键。1-7 本文从 1D、2D 和 3D 纳米结构的设计和自组织的角度介绍了纳米结构功能液晶材料。还描述了材料设计与分子动力学 (MD) 3,8,9 模拟和高级测量 10,11 的协同作用。例如,近晶液晶材料已应用于 2D 纳米结构电解质 7,12 和水处理膜 3,13。在 2D 液晶电解质中观察到与锂离子电池一样的稳定行为。 7,12纳米结构聚合物保留了由相分离产生的二维近晶结构,从而实现了高病毒去除率。3,13通过MD模拟和X射线光谱研究了1D、2D和3D纳米结构及其高级功能之间的关系。8,9,10,11例如,通过X射线和MD模拟获得的电子密度图结果很好地解释了近晶电解质分子的2D相结构及其转变。9此外,同步加速器软X射线发射研究很好地解释了亚纳米多孔水处理液晶膜的选择性。11基于自组织动态结构的性质,液晶作为高功能软物质在各个领域具有巨大潜力。致谢:非常感谢KAKENHI JP19H05715、JST-CREST JPMJCR1422、JPMJCR20H3 和MEXT 材料研发项目JPMXP1122714694 的资金支持。
摘要:海洋藻类物种包括大部分多糖,这些多糖显示出了功能性的特性和健康的益处,可用于治疗和预防人类疾病。laminarin或β-葡聚糖是棕色藻类的储存多糖,具有潜在的药物特性,例如抗氧化剂,抗肿瘤,抗肿瘤,抗致凝剂,抗凝剂,抗癌药,抗癌,抗痴呆症,抗痴呆症,抗抑制性,抗糖尿病,抗糖尿病,抗抑制作用,抗毒剂,抗形性,伤害疗法,并治愈了治疗。它已被广泛研究为生物医学应用中的功能材料,因为它具有生物降解,生物相容性并且是低毒物质。报道的临床前和临床研究表明,在生物医学和工业应用中,椎板蛋白作为自然替代药的潜力,例如营养素,药品,功能性食品,药物开发/递送以及Cosme-Ceuticals。本综述总结了拉米那林的生物学活性,包括作用机制,对人类健康的影响并报告了健康的好处。此外,这篇综述还概述了最新进步,并确定了该领域进一步研究的差距和机会。它进一步强调了lam-纳林在临床前和临床环境中的分子特征和生物学活性,以预防疾病和潜在的治疗干预措施。
摘要:胶体粘土纳米片是通过由于其形状各向异性的形状晶体而在水中形成晶状体粘土矿物的分层晶体获得的。在液晶粘土纳米片上加载有机染料将启用新型的光子材料,其中负载染料的光函数由粘土纳米片的液晶度控制。然而,有机染料在纳米片上的吸附会使纳米片表面疏水,因此,纳米片的胶体稳定性丢失了。在这项研究中,通过将阳离子阳离子的染料染料夹在一对合成氟脱甲岩纳米片之间来克服这种缺点。这是通过制备Stilbazolium - 粘土第二阶段插入化合物,其特征是将染料阳离子插入Hectorite粘土的其他每个层间空间,在那里非中型的层间间空间由Na +离子占据。第二阶段的插入化合物是通过在所有层间空间中掺入Na +离子的母离子粘土矿物的部分离子交换获得的,并从Na +含有含有Na +的层间间空间分层,形成粘土纳米片,以夹层染料分子。染料 - 糖粘土纳米片的水性胶体形成胶体液晶,染料 - 丝晶液晶粘土纳米片对施加的交流电场做出反应,以平行于电场。粘土纳米片的电对准会诱导夹层sti菌分子的光吸收改变,这验证了构建粘土 - 有机杂交的刺激反应光子材料的策略。电场下染料 - 丝晶粘土纳米片的组装结构的特征是分配的离散粘土血小板,这与粘土纳米片的胶体液体晶体有些不同,而粘土纳米片的胶体液体均不具有染色器载荷,而没有巨型液体晶体域的特征,其特征在于宏观液体晶体域。■简介
爱尔兰都柏林技术大学电气和电子工程学院的光子研究中心。B Tyndall国家研究所,大学科克大学科克,李·麦芽(Lee Maltings),戴克游行,爱尔兰科克。c数学,物理和电气工程系,诺森比亚大学,纽卡斯尔,泰恩NE1 8日,英国。* d19125415@mytudublin.ie
metasurfaces由于使用定期布置的纳米结构,可以随意调节电磁波,因此为下一代光学设备打开了通往下一代光学设备的门。然而,元时间通常具有固定的纳米结构几何形状的静态光学响应,这通过替换常规的光学组件来实施向技术的过渡带来挑战。为了解决此问题,液晶(LCS)已被积极地用于使用可调节的双折射物实时设计可调的跨面。在这里,我们回顾了有关LC可调式元面的最新研究,这些研究被归类为波前调整和光谱调整。与对可调式跨面的众多评论相比,该评论深入探讨了LC集成的元整日的最新发展。在这篇综述结束时,我们简要介绍了有关LC驱动的元信息的最新研究趋势,并提出了改善LCS的进一步说明。我们希望这篇评论能够加速新的和创新的LC-POW设备的开发。
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
水下生物具有复杂的推进机制,使它们能够以特殊的灵活性来浏览流体环境。最近,实质性的效果专注于使用智能形状变化的材料将这些运动集成到软机器人中,尤其是通过使用光进行推进和控制。尽管如此,挑战仍然存在,包括缓慢的响应时间和强大的光束启动机器人的需求。这最后可能导致意外的样品加热,并可能需要在游泳者身上进行特定的驱动点。为了应对这些挑战,引入了新的含偶氮苯的光聚合油墨,可以通过挤出打印到精确形状和形态的液晶晶体弹性体(LCE)元素中来处理。这些LCE表现出由中强度的紫外线(UV)和绿光驱动的快速而显着的光机械水下反应,这是致动机制,主要是光化学。受自然的启发,印刷了一种仿生的四叶埃菲拉(Ephyra)样游泳者。具有中等强度紫外线和绿灯的整个游泳器的定期照明,可引起同步的lappet弯曲光源,游泳者的推进器远离光线。该平台消除了对局部激光束和跟踪系统的需求,以通过流体监视游泳者的运动,从而使其成为创建轻型机器人LCE的多功能工具。
摘要:在材料的同一区域中创建双模式模式是提高信息存储维度,提高加密安全性水平并促进编码技术开发的高级方法。但是,原地,不同的模式可能会导致在制造和使用过程中严重的相互干扰。新材料和图案技术对于进步非介入双模式模式至关重要。在本文中,通过结合结构色和色极化来证明非递交双模式模式,该结构颜色和色极化是由含有偶氮苯的线性液体晶体共聚物设计的,具有光荧光效果。一方面,结构颜色模式是通过硅模板印刷的,并在紫外线诱导的聚合物表面从玻璃状到橡胶状态的局部局部过渡之后,并带有周期性微观结构。另一方面,基于局部光诱导的介体取向的不同极化模式是通过魏格特效应在光荧光区域内产生的。,次级印迹用于消除撰写极化模式期间结构颜色模式的部分损害,从而获得双模式图案而不会干扰。这项研究为创建具有潜在跨行业应用的先进材料和复杂的光图案技术提供了蓝图。■简介
抽象是由需要新材料和绿色能源产生和转换过程的摘要,这是一类用于集成在理论电荷泵电路中的液晶弹性体(LCE)的数学模型。电荷泵利用LCE的化学和机械性能在照明或加热时从列中到各向同性相的化学和机械性能,从电池提供的较低电压产生较高的电压。对于材料组成型模型,纯粹的弹性和新古典型应变能密度合并适用于多种单构域的弹性体,而弹性和光热响应则是将研究解耦以使研究在分析上可以分析。通过改变弹性和新古典术语的模型参数,发现LCE在电荷泵电容器中用作介电材料时比橡胶更有效。