溶致液晶 (LLC) 因其具有多种纳米级结构、可加工性和多样化的化学功能而受到众多技术领域的关注。然而,它们的机械性能和热稳定性较差。LLC 中的聚合(称为 LLC 模板化)是克服此问题的有效方法。虽然模板化方法可获得强大的机械、物理和热性能,但聚合后母 LLC 结构的保留一直是该领域的主要关注点。因此,人们做出了许多努力来引入新材料和技术,以在聚合后保留原生 LLC 纳米结构。在这篇综述中,我们在简要介绍 LLC 结构之后,概述了该领域的努力以及从 LLC 模板化中获得的材料的应用。此外,还分析了不同 LLC 结构中的聚合动力学,这是结构保留的关键因素。此外,我们还讨论了该领域的前景和可用的机会。
过去二十年,液晶应用的爆炸式增长促使我们出一本书来介绍这些不同的用途。大约两年前,World Scientific 邀请我担任液晶应用书籍的编辑,我萌生了写书的想法。我们计划分两卷出版这本书,第一卷介绍液晶的基础知识和电光应用(第 1-19 章),第二卷介绍其他类型的应用(第 20-27 章)。但是,由于收到几章的时间延迟,因此增加了第三卷,主要是针对这两卷中较晚收到的章节。由于原计划受阻,我决定将我的章节分配到三卷中的每一卷,尤其是为了让第二卷和第三卷的大小更合适。本书的每一章都提供了由该领域的权威人士撰写的独立且最新的最新评论。第一卷包含 13 章关于液晶基础知识和电光应用的内容,于 1990 年 7 月出版。本卷在 1990 年 7 月 23 日至 27 日在加拿大温哥华举行的第 13 届国际液晶会议上展出,获得了液晶界的极佳反响。
作为动态平板光学设备的空间照明调制器在过去的两个十二月中见证了快速发展,这与微型和光电 - 电动集成技术的进步伴随着。尤其是液体晶体空间光调节器(LC-SLM)技术被视为多功能工具,用于生成任意光场并根据相位和振幅量身定制所有自由度。这些设备在空间和时间的结构光的新生场中获得了显着的影响,这是由于它们的易用性和实时的光线操作,从而促进了基本的研究和实用应用。在这里,我们提供了LC-SLMS的关键工作原理的概述,并审查了迄今为止在各种应用程序部署中取得的重大进展,这些主题像光束成型和转向,全息,光学诱捕和镊子一样多样化,测量,波段编码,波动编码,光学量,量化量和量化。最后,我们以对这个快速发展的领域的潜在机会和技术挑战的前景结论。
液晶弹性体 (LCE) 表现出一些显著的物理特性,例如在不同性质的适当环境刺激(如热刺激)下可引起可逆的较大机械变形,这使得它们可以用作软致动器。LCE 所表现出的独特特性源于它们的各向异性微结构,其特点是嵌入聚合物网络中的液晶原分子的优先取向。LCE 设计中的一个悬而未决的问题是如何控制它们的驱动效率:液晶原分子的数量、它们如何连接到网络、有序度、交联密度是一些可控参数,然而,除了最后一个参数外,它们的空间分布一般无法调整。在本文中,我们开发了一个基于微机械的理论框架来模拟和探索网络交联密度对液晶弹性体元件机械驱动的影响。在此背景下,用于获得弹性体交联网络的光诱导聚合(光聚合)尤其令人感兴趣,它适用于精确调整材料内的交联密度分布;该技术能够获得分子级架构的 LCE,从而实现可获得驱动的最佳设计。在智能结构元件(LCE 微结构设计和优化)内正确设置交联密度排列的可能性代表了一种创建具有材料微结构编码所需驱动能力的分子级工程 LCE 元件的有趣方法。
摘要:在本文中,我们描述了一种基于动态复杂液晶乳液的高度负责的光学生物传感器。这些乳液的准备很容易,并且由不混溶的手性列液晶(N*)和碳碳油组成。在这项工作中,我们利用N*选择性反射来构建新的感应范式。我们的检测策略是基于通过与LC界面处的IgG抗体可逆相互作用通过可逆相互作用的硼酸聚合物表面活性剂的LC/W界面活性的变化。由于聚合物结构中的双phaphthyl单位的支撑,这种生物分子识别事件可能会改变N*组织的音高长度,该聚合物结构已知是强大的手性掺杂剂。我们证明,这些触发的反射变化可以用作检测食源性病原体沙门氏菌的有效光学读数。
液晶 (LC) 分子的超分子自组装引起了广泛关注,因为这些动态和自组织结构可以诱导各种高级功能,如传输、信息、传感、驱动、光功能和生物功能。分子结构的设计和分子相互作用的控制是获得高功能液晶纳米组装的关键。1-7 本文从 1D、2D 和 3D 纳米结构的设计和自组织的角度介绍了纳米结构功能液晶材料。还描述了材料设计与分子动力学 (MD) 3,8,9 模拟和高级测量 10,11 的协同作用。例如,近晶液晶材料已应用于 2D 纳米结构电解质 7,12 和水处理膜 3,13。在 2D 液晶电解质中观察到与锂离子电池一样的稳定行为。 7,12纳米结构聚合物保留了由相分离产生的二维近晶结构,从而实现了高病毒去除率。3,13通过MD模拟和X射线光谱研究了1D、2D和3D纳米结构及其高级功能之间的关系。8,9,10,11例如,通过X射线和MD模拟获得的电子密度图结果很好地解释了近晶电解质分子的2D相结构及其转变。9此外,同步加速器软X射线发射研究很好地解释了亚纳米多孔水处理液晶膜的选择性。11基于自组织动态结构的性质,液晶作为高功能软物质在各个领域具有巨大潜力。致谢:非常感谢KAKENHI JP19H05715、JST-CREST JPMJCR1422、JPMJCR20H3 和MEXT 材料研发项目JPMXP1122714694 的资金支持。
摘要 液晶弹性体是一种将液晶的各向异性与聚合物网络的弹性相结合的活性材料。液晶弹性体在外界刺激下表现出显著的可逆收缩和伸长能力,使其在软机器人、触觉设备、形状变形结构等多种应用方面具有广阔的应用前景。然而,液晶弹性体主要依赖加热作为驱动刺激,限制了它们的实际应用。这一缺点可以通过加入在各种刺激下能产生热量的填料来有效解决。液晶弹性体复合材料的最新进展大大扩展了液晶弹性体的应用潜力。在这篇小型评论中,我们介绍了采用液晶弹性体复合材料的软致动器的设计策略,然后详细探讨了光热和电热液晶弹性体复合材料作为突出的例子。此外,我们还展望了液晶弹性体复合材料领域的挑战和机遇。
优化混合液晶量子点 (LC-QD) 系统对于未来的发展至关重要,特别是在解决可扩展性和能源效率相关问题方面。研究应侧重于改善 QD 在液晶基质内的分布和排列,以及探索外部刺激(如电场)如何动态调整系统属性以优化性能。此外,开发结合液晶、量子点和纳米光子结构等其他元素的多功能混合材料为先进的量子技术提供了潜力。这些材料可以实现可编程功能,如实时光子发射调制和纠缠的产生。进一步探索基于液晶的 PBG 材料(允许精确的光子流控制),可以创建动态管理光物质相互作用的新架构。这对于构建能够在各种环境中运行的自适应和响应性光子电路和量子通信系统至关重要 [16,40,61,76]。