通常称为5CB,4-甲氧-4'-戊苯基是具有化学式C18H19N的列液晶体。它首先由乔治·威廉·格雷(George William Gray),肯·哈里森(Ken Harrison)和J.A.合成。纳什(Div> Nash)于1972年在赫尔大学(University of Hull),当时是氰基苯基的第一位成员。[1] [2] 5CB分子在22.5°C下从晶体到列相的相变长20Å,并在35.0°C下从列中到同性恋态。尽管由于其低过渡温度向各向同性及其狭窄的列相范围而不适合LCD,但它仍然是基础研究中最常用的列表之一。这是阳性介电各向异性材料的参考材料之一,并且可用的物理数据量最多。碳纳米管是由滚动石墨烯片制成的管状结构。作为许多纳米颗粒,对它们进行了研究,以便在其他材料中使用和插入以改善其电气[3-5]或生物学[6]特性,但也作为光电和磁化器件中高级材料的掺杂剂[7-12]。,为了适当使用,必须将它们作为单个颗粒作为单个颗粒进行研究,而不是像它们表现出完全不同的行为的大部分。许多
metasurfaces由于使用定期布置的纳米结构,可以随意调节电磁波,因此为下一代光学设备打开了通往下一代光学设备的门。然而,元曲面通常具有固定几何形状的纳米结构的静态响应,这通过替换常规的光学组件来实施向技术的过渡带来挑战。为了解决此问题,液晶(LCS)已被积极地用于使用可调节的双折射物实时设计可调的跨面。在这里,我们回顾了有关LC可调式元面的最新研究,这些研究被归类为波前调整和光谱调整。与对可调式跨面的众多评论相比,该评论深入探讨了LC集成的元整日的最新发展。在这篇综述结束时,我们简要介绍了有关LC驱动的元信息的最新研究趋势,并提出了改善LCS的进一步说明。我们希望这篇评论能够加快新型和创新的LC设备的开发。
1,东京大学,邦基库(Bunkyo-Ku),东京,东京113-8656,工程学院化学与生物技术系,日本; 2关于上材料的研究计划,新生大学,瓦卡托,长野,380- 8533,日本关键词:液晶,自组织,纳米结构,纳米结构,超分子装配超分支超分子自我组成的liqiud-crystalline(lc)Molecules的liqiud-crystalline(LC)分子的变化,这是一定的变化,因为这是一定程度上的变化,因为它是一种变化,因为它是一种变化,因为它是一种变化,而有效地a了,这是一定的变化。由于这些动态和自组织的结构,可以诱导作用,光功能和生物功能。分子结构的设计和分子相互作用的控制是获得高功能性LC纳米组件的关键。1-7,纳米结构功能LC材料在1D,2D和3D纳米结构的设计和自组织方面呈现。材料设计与分子动力学(MD)3,8,9模拟和高级测量10,11的协作。例如,近晶型LC材料已应用于2D纳米结构的电解质7,12和水处理膜3,13。稳定的行为是2D LC电解质的锂离子电池。7,12高病毒去除,用于保留从相分离的2D近晶结构的纳米结构聚合物。通过MD模拟和X射线光谱研究了1D,2D和3D纳米结构及其高级功能的3,13关系。8,9,10,11,例如,2D相结构及其近晶型电解质摩勒的跃迁通过X射线和MD模拟获得的电子密度图的结果很好地解释了。9此外,通过对同步加速器设施的软X射线排放研究很好地解释了纳米多孔水处理LC膜的选择性特性。11液晶在基于自组织动态结构的性质的各个领域具有高功能性软物质具有巨大的潜力。致谢:对Kakenhi JP19H05715,JST-CREST JPMJCR1422,JPMJCR20H3和MEXT材料R&D Project JPMXP1122714694的财务支持。
1曼彻斯特大学物理与天文学系,曼彻斯特牛津路,曼彻斯特,M139PL,英国关键字:两极分化显微镜,纹理,缺陷,沃罗诺伊模式,在本教程中的机器学习,我们将讨论一系列通过其纹理表征液晶阶段的方法。从极化显微镜开始,我们将显示从列表到近晶和软晶体的各种不同阶段的最特征性纹理,并解释了它们的某些特征性外观和缺陷[1]。同样,我们将很快引入手性,并证明新颖的阶段(例如蓝色相和晶粒边界阶段)如何出现新颖,不同的纹理和缺陷。说明我们如何验证某些液晶缺陷的结构[2,3]后,我们将与固态系统进行简短的比较,固态系统通常显示出与液晶相似的缺陷,但长度尺度非常不同。在这种情况下,还证明了许多液晶纹理实际上可以是通过一种称为伏诺伊图的相当普遍使用的算法而导致的,从而导致伏诺诺纹理[4,5]。终于,我们将探索现代机器学习算法(例如卷积网络和构成模型)的多远来表征液晶。将出现一系列示例,从涉及列相的简单过渡到涉及列非列,流体近晶和近晶型序列[6]甚至软晶体相的更复杂的场景。将讨论机器学习的优势和缺点,也可以看到陷阱以避免[8]。__________________________此外,用副晶体,铁电,铁 - 和抗抗逆逆异性阶段的手性液晶中的完整相位序列将通过机器学习证明是可以预测的[7]。
量子点(QD)在液晶(LC)培养基中的分散可以有效地修改其介电和电光特性,这些特性在基于LC的显示以及非放置应用程序中很有用。在这里,我们报道了钙钛矿量子点(PQD)掺杂对列液晶(NLC)材料的介电性能的影响,即Zli-1565在其整个列和各向同性相。纯NLC的介电参数及其具有PQD的复合材料(0.1 wt。%,0.25 wt。%和0.5 wt。%)。与纯NLC相比,由于移动离子密度的增长,复合材料的介电介电常数(ɛʹ)和介电损耗(ɛʺ)的值增加。纯NLC的损耗因子(tanδ)的光谱峰随着PQD的添加向高频区域移动。此外,还评估了纯NLC和0.25 wt。%PQDS-NLC复合材料的温度依赖性介电参数(即最佳浓度)。此外,还评估了纯样品和0.25 wt。%复合材料的介电性各向异性和阈值电压。与纯净NLC相比,这里要注意的一点是,与纯NLC相比,清除温度(T n-I)的复合材料的清除温度(T N-I)减少了4°C。在这种PQDS-NLC复合材料上获得的结果可用于具有可调介电特征的基于NLC的电气设备。
摘要软计算机将需要柔软的材料,这些材料表现出丰富的功能多样性,包括形状变形和光反应。这些功能的组合可以在软计算机中有用的行为,可以通过合成表现出局部响应性的材料来进一步发展。可以通过为直接墨水写作(DIW)制定复合墨水来启用液晶弹性体(LCE)的局部响应(LCE),它们是表现出形状变形的软材料。金纳米棒(Aunrs)可以添加到LCES中,以通过局部表面等离子体共振吸收光后光热形状变化。我们比较了LCE公式,重点是DIW和Aunrs的光响应性打印。不同的三维体系结构的局部响应能力启用了可以振荡,爬网,滚动,运输质量并显示其他独特的致动和运动模式,以响应光线,从而使这些有希望的功能材料用于高级应用程序。
摘要:在本文中,我们描述了一种基于动态复杂液晶乳液的高度负责的光学生物传感器。这些乳液的准备很容易,并且由不混溶的手性列液晶(N*)和碳碳油组成。在这项工作中,我们利用N*选择性反射来构建新的感应范式。我们的检测策略是基于通过与LC界面处的IgG抗体可逆相互作用通过可逆相互作用的硼酸聚合物表面活性剂的LC/W界面活性的变化。由于聚合物结构中的双phaphthyl单位的支撑,这种生物分子识别事件可能会改变N*组织的音高长度,该聚合物结构已知是强大的手性掺杂剂。我们证明,这些触发的反射变化可以用作检测食源性病原体沙门氏菌的有效光学读数。
报告了用于制造液晶弹性体(LCE)晶格的集成设计,建模和多物质的3D打印平台,并报告了具有空间可编程的nematic Director订单和本地组成的均质和异质布局。根据其组成拓扑结构,这些晶格在其各自的近视转变温度上方和下方循环时表现出不同的可逆形状变形转换。此外,可以证明,在评估所有LCE晶格设计的实验观察到的变形响应与模型预测之间存在良好的一致性。最后,建立了一个反设计模型,并证明了以预测的变形行为打印LCE晶格的能力。这项工作开辟了新的途径,用于创建构建的LCE晶格,这些晶格可能会在能量散落结构,微流体泵送,机械逻辑和软机器人技术中找到潜在的应用。