在基于液晶弹性体 (LCE) 的刺激响应材料的潜在应用中,开发不受束缚的软致动器是最具吸引力的应用之一。[1–4] 例如,在软体机器人中[5–8] 以及在微流体和仿生设备中,[9,10] 含有光活性分子的光响应性 LCE 聚合物已得到广泛应用。[11,12] 与温度和湿度等其他刺激相比,光作为不受束缚的刺激物的好处是时空控制、可调性和直接应用。[13–15] 因此,开发基于可聚合 LCE 材料的光驱动致动器的努力已成为一个成熟的研究课题,为将光转化为机械运动奠定了宝贵的基础。 [16,17] 偶氮苯衍生物是目前 LCE 执行器中最突出的光开关,因为它们易于加入,并且能够实现快速、可逆响应的远程控制驱动。[18,19] 然而,通常需要液晶 (LC) 材料的光聚合才能获得可逆的形状变化。[20,21] 这种光诱导交联过程非常耗时,而且高效固化具有挑战性,而偶氮苯部分的不良异构化则进一步阻碍了这一过程。[22]
由硕士工程师 Martyna Durko-Maciąg 撰写的博士论文由硕士工程师 Martyna Durko-Maciąg 撰写,致力于研究有机电荷转移化合物的光放大现象 - 具有潜在应用的新材料,并在 Jarosław Myślwiec 教授和 Julien Massue 博士的指导下进行。该研究是在波兰弗罗茨瓦夫理工大学化学学院以及法国国家科学研究中心和法国斯特拉斯堡大学进行的,作为跨学科跨机构研究生研究 KNOW 在生物技术和纳米技术领域(BioTechNan)的一部分。所审查的博士论文本质上是跨学科的,结合了化学和材料工程,这在化学科学领域的实验工作中越来越普遍。
图片/显示 • LCD 面板类型:IPS 技术 • 背光类型:W-LED 系统 • 面板尺寸:27 英寸 / 68.6 厘米 • 显示屏涂层:防眩光,3H,雾度 25% • 有效可视面积:597.89(水平)x 336.31(垂直) • 宽高比:16:9 • 像素密度:82 PPI • 响应时间(标准):4 毫秒 (GtG)* • 亮度:250 cd/m² • SmartContrast:10,000,000:1 • 对比度(标准):1000:1 • 最大分辨率:1920 x 1080 @ 75 Hz* • 像素间距:0.311 x 0.311 毫米 • 视角:178º(水平)/ 178º(垂直),@ C/R > 10 •无闪烁 • 显示色彩:16.7 M • 扫描频率:30 -83 kHz(水平)/ 56 -76 Hz(垂直) • LowBlue 模式 • sRGB
溶致液晶 (LLC) 因其具有多种纳米级结构、可加工性和多样化的化学功能而受到众多技术领域的关注。然而,它们的机械性能和热稳定性较差。LLC 中的聚合(称为 LLC 模板化)是克服此问题的有效方法。虽然模板化方法可获得强大的机械、物理和热性能,但聚合后母 LLC 结构的保留一直是该领域的主要关注点。因此,人们做出了许多努力来引入新材料和技术,以在聚合后保留原生 LLC 纳米结构。在这篇综述中,我们在简要介绍 LLC 结构之后,概述了该领域的努力以及从 LLC 模板化中获得的材料的应用。此外,还分析了不同 LLC 结构中的聚合动力学,这是结构保留的关键因素。此外,我们还讨论了该领域的前景和可用的机会。
可变形表面有可能实现新型自适应系统,但现有的制造方法在实现高分辨率变形为任意指定形状的能力方面有限。这项工作提出了一个平台和用于生成刀具路径的算法,以实现能够进行高分辨率表面变形的自由曲面结构。变形表面由液晶弹性体 (LCE) 组成,向列相域使用能够施加可调压力和剪切速度的刮擦柱进行对齐,能够局部调整驱动应变,从而将曲率半径从 1.8 毫米调整到 14.4 毫米。使用两种替代算法生成了多层结构的图案化刀具路径,并使用能够从平板变形为圆顶的示例结构和人脸模型对结果进行了比较。与原始模型相比,此过程产生的变形人脸形状结构相似度高达 84.5%,证明了这种方法在制造复杂可变形 LCE 结构方面的高保真度和可重构性。
液晶弹性体 (LCE) 是一类由松散交联的聚合物网络组成的形状记忆聚合物,在从向列相到各向同性相的转变过程中表现出可逆的形状变化。[1] 由于它们具有类似肌肉的工作密度和收缩应变 [10–14],并且能够打印或图案化为各种几何形状,它们已越来越广泛地用作软体机器人、[2–4] 可穿戴计算和触觉 [5,6] 和形状变形物质 [7–9] 中的执行器。[15,16] 在大多数机器人和工程应用中,基于 LCE 的执行器使用外部热源进行热刺激,或通过焦耳加热使用集成线或嵌入式渗透粒子网络进行电刺激。先前的研究主要集中在通过焦耳加热来加热 LCE,[6,12,13,17,18] 其中许多应用使用液态金属[19–21] 和波浪电子[12,13,22,23] 作为加热元件。然而,这些方法的一个关键限制是它们依赖于开环加热和被动冷却。这导致温度变化缓慢,并且对控制 LCE 执行器响应速度和曲线的能力有限。具体而言,由于 LCE 的热导率低至 0.3 W m − 1 K − 1[20],导致驱动速度可能很慢;由于热传递是通过对流而不是传导进行的,冷却速度受到极大限制。后者导致冷却时间可能需要激活时间的 5 倍[12,24] 10 倍[13] 甚至 50 倍[25] 才能使 LCE 在环境条件下冷却并恢复到其原始状态。此外,由于温度升高幅度更大,更快的驱动速度需要更长的冷却时间。[25] 为了减少加热时间,人们嵌入了液态金属液滴等软填料来提高这些结构的热导率。[6] 冷却时间的问题仍然存在,加热和冷却时间的差异取决于传导(加热)和对流(冷却)之间传热速率的差异;需要更智能的方法来解决这个问题。最近有人努力通过新的刺激方法来提高 LCE 执行器的速度和控制,[26] 尽管其中大多数方法都会引入显着的机械
材料在一次使用后就会永久损坏,不适合重复使用。最近,结构材料 (或超材料) 被设计成通过弹性屈曲不稳定性来捕获能量。[1–5] 这种结构能量捕获机制具有可扩展性和可逆性,使结构材料可重复使用。[3] 尽管如此,弹性能量捕获机制具有固定的能量吸收能力,而与应变率无关。[3] 希望开发一种可重复使用的结构材料,这种材料在很宽的应变率范围内表现出更大的能量吸收能力,以增强振动和冲击保护性能。为了实现这一目标,我们假设可以通过结合速率相关的材料耗散机制来增强结构材料的能量吸收能力。 [3,6–8] 虽然结构材料的概念是基于材料和几何形状之间的相互作用,但大多数研究都集中在机械不稳定性而非材料非弹性的非线性效应上。[5] 最近,很少有研究应用粘弹性来调节多稳态超材料的屈曲模式。例如,Janbaz 等人 [9] 展示了如何使用由两个横向连接的梁组成的双梁来实现应变率相关的机械超材料,其中一个是超弹性的,另一个是粘超弹性的。
摘要:液晶 (LC) 微液滴阵列是一种精巧的系统,由于其对表面性质变化的敏感性和强光学活性,具有广泛的应用,例如化学和生物传感。在这项工作中,我们利用自组装单层 (SAM) 对表面进行化学微图案化,并优先选择液晶占据的区域。利用不连续脱湿,将一滴液体拖到图案化表面上,展示了一种新颖、高产的方法,可将液晶限制在化学定义的区域中。通过改变液滴的大小和液晶相,证明了该方法的广泛适用性。虽然液滴的光学纹理由拓扑约束决定,但额外的 SAM 界面显示出锁定非均匀排列。表面效应高度依赖于尺寸,其中较大的液滴在向列相液滴中表现出不对称的指向矢结构,而在胆甾相液滴中表现出高度打结的结构。