响应深层摄影所带来的不断升级的威胁,以前的研究工作重点是发明利用CNN体系结构的检测模型。尽管结果有希望,但其中许多模型在面对现实世界的情况时表现出可重现性和实用性的局限性。为了应对这些挑战,这项研究努力开发一个更概括的检测框架,能够辨别各种数据集的深击内容。通过在精选的Wilddeepfake数据集中训练简单但有效的ML和DL模型,该研究评估了检测来自DeepFake对应物的真实媒体的可行性。通过对模型性能的比较分析和评估,本研究旨在为可靠的深泡检测方法的发展做出贡献。这项研究中使用的模型表明,在对DeepFake介质进行分类方面有明显的准确性。
抽象理解劳动力市场动态需要准确地确定劳动力所需和拥有的技能。自动化技术越来越多地发展以支持这一工作。但是,由于现有的技能大量,从职位发布中自动提取技能是具有挑战性的。ESCO(欧洲技能,能力,资格和职业)框架提供了有用的参考,列出了13,000多个个人技能。但是,技能提取仍然很困难,并且将工作职位与ESCO分类学相匹配是一个开放的问题。在这项工作中,我们提出了一个基于大语言模型(LLMS)的职位描述中的技能提取的端到端零拍系统。我们为整个ESCO技能生成合成培训数据,并培训分类器以从工作职位中提取技能。我们还采用了相似性检索器来生成技能候选者,然后使用第二个LLM重新排名。使用合成数据达到RP@10分比以前的遥远监督方法高10分。添加GPT-4重新排行机将RP@10提高到以前的方法超过22点。我们还表明,在提示LLM提示LLM时,将任务作为模拟编程可以比自然语言提示更好的性能,尤其是在LLMS较弱的情况下。我们演示了在匹配管道的两端的两端集成大型语言模型的潜力。我们的方法不需要人类注释,并且在针对ESCO的技能提取方面取得了极为有希望的结果。
Test cells shall be secured to the testing machine by means of a rigid mount which will support all mounting surfaces of each test cell.Each cell or battery shall be subjected to a half-sine shock of peak acceleration of 150 gn and pulse duration of 6 milliseconds.Alternatively, large cells may be subjected to a half-sine shock of peak acceleration of 50 gn and pulse duration of 11 milliseconds.Each cell shall be subjected to three shocks in the positive direction followed by three shocks in the negative direction of three mutually perpendicular mounting positions of the cell or battery for a total of 18 shocks./ 以稳固的托架固定住每个样品。对每个电芯 样品以峰值为 150gn 的半正弦的加速度撞击,脉冲持 续 6ms ,另外,大电芯须经受最大加速度 50gn 和脉 冲持续时间 11ms 的半正弦波冲击,每个样品必须在 三个互相垂直的电池安装方位的正方向经受三次冲 击,接着在反方向经受三次冲击,总共经受 18 次冲 击。
DeepFake Technology使用AI来创建操纵媒体,对社交媒体平台上的信息完整性构成了重大威胁。在印度,Deepfake内容的兴起呈指数增长,尤其是在政治和娱乐领域,假新闻和AI生成的视频已经风靡一时,导致了错误的信息。主要目的是开发一个可靠的AI模型,该模型可以准确地检测到社交媒体平台上的深击内容,重点是使用FastText Embeddings识别机器生成的推文。传统方法涉及根据预定义的规则和关键字匹配的社交媒体帖子的人类审核,事实检查机构以及手动过滤。这些方法是耗时的,而且通常不准确,缺乏管理大量在线内容的可扩展性。手动检测深摄影和AI-AI-I-Actuct含量非常低效,容易出现错误,并且无法实时处理大量社交媒体数据。因此,在被识别或删除之前,有害和误导性信息可能会广泛传播。随着社交媒体在塑造公众舆论的日益影响,这项研究背后的动机是打击错误信息和维护在线话语的完整性。特别是深度学习模型可以通过自动化社交媒体内容的分析来显着改善对深击的检测。fastText嵌入将将推文转换为有意义的单词向量,而深度学习模型可以应用于对推文是人类生成还是AI生成的推文。与传统方法相比,这种方法提供了实时检测,提高准确性和可伸缩性。
Deep North 是面向物理世界的分析和人工智能公司。其端到端软件解决方案将人工智能与计算机视觉相结合,帮助零售商和企业数字化和分析物理世界中的行为指标,并为他们提供根据这些洞察采取行动的工具。Deep North 让购物中心、实体零售店和交通枢纽从数字世界中回收消费者流量,以创造更好的客户体验。它们使零售商能够评估、解释和预测其商业实体空间中的消费者行为。
月球到火星架构 为了成功实现人类在深空的持久存在,NASA 战略性地优先考虑硬件开发,首先是该机构广受认可的探索蓝图及其支持性的月球到火星目标,这些目标是在世界各地专家的意见下制定的。每个目标都通过系统工程流程分解,得出架构元素,例如火箭、航天器、探测器、宇航服、通信中继等,这些元素将逐步开发并运送到月球和火星,以进行长期的、人类主导的深空科学发现。架构本身由多个部分组成,NASA 可以将架构分解为易于管理的部分,以集中和优先考虑其分析工作并与合作伙伴进行协调。架构各个部分 — 人类重返月球、基础探索、持续月球演化和人类登陆火星 — 如下所述。
不确定性意识对于开发可靠的机器学习模型至关重要。在这项工作中,我们建议对目标分布属于指数族的任何任务的快速和高质量不确定性估计进行自然后网络(NATPN)。因此,NATPN发现用于分类和常规回归设置的应用。与以前的许多方法不同,NATPN在培训时不需要分发(OOD)数据。取而代之的是,它利用标准化流量将单个密度拟合在学习的低维和依赖性潜在空间上。对于任何输入样本,NATPN使用预测的可能性对目标分布进行贝叶斯更新。从理论上讲,NATPN分配了远离培训数据的高不确定性。从经验上讲,我们对校准和OOD检测的广泛实验表明,NATPN为分类,回归和计数预测任务提供了高度竞争性的绩效。
摘要。随着大数据时代(BD)的出现,人们面临着大规模数据和复杂问题的挑战。这些数据并为决策者提供准确,及时的决策支持已成为当前研究中的热门问题。以营销决策为例,本文基于深度学习(DL)构建了BD分析和计算机辅助决策支持系统(DSS)。首先,系统通过数据预处理和功能提取提取与原始数据营销相关的功能。然后,DL模型用于学习和预测特征,并获得了营销策略的优化方案。最后,通过模拟实验测试了决策系统的实际应用效果,这证明了该方法的可行性和优势。通过采用DL模型,并比较模糊C聚集(FCM)算法和决策树(DT)算法,本文中的算法是稳定性测试中最稳定的算法,可以提供有效且稳定的决策支持。此外,本文中的算法在实时分析中也具有很大的优势,该算法可以快速处理大量数据并满足实时决策的需求。这些优势使基于DL的智能DSS具有广泛的应用前景,并且可以为实践决策问题提供强有力的支持。