响应深层摄影所带来的不断升级的威胁,以前的研究工作重点是发明利用CNN体系结构的检测模型。尽管结果有希望,但其中许多模型在面对现实世界的情况时表现出可重现性和实用性的局限性。为了应对这些挑战,这项研究努力开发一个更概括的检测框架,能够辨别各种数据集的深击内容。通过在精选的Wilddeepfake数据集中训练简单但有效的ML和DL模型,该研究评估了检测来自DeepFake对应物的真实媒体的可行性。通过对模型性能的比较分析和评估,本研究旨在为可靠的深泡检测方法的发展做出贡献。这项研究中使用的模型表明,在对DeepFake介质进行分类方面有明显的准确性。
主要关键词