旨在永久浸入的产品可以承受最多6,000米深水的外部压力。具有次要遏制的版本可在深水运行中提供高水平的产品完整性。。单位可以向3,000米的水淹没提供高压测试证书。电连接是通过强PTFE Raychem Flexlite引线。
深水地平线 (DWH) 大规模和持续性漏油事件对应急响应能力提出了挑战,需要在天气和操作层面进行准确、定量的石油评估。尽管经验丰富的观察员是溢油应急响应的中流砥柱,但训练有素的观察员人数很少,而且天气、石油乳化和场景照明几何等混杂因素也带来了挑战。广泛的机载和星载被动和主动遥感技术辅助了 DWH 溢油和影响监测。油膜厚度和油水乳化比是控制/清理的关键溢油响应参数,对于厚 (>0.1 毫米) 油膜,这些参数是从 AVIRIS(机载可见光/红外成像光谱仪)数据中定量得出的,使用基于近红外光谱吸收特征的形状和深度的光谱库方法。MODIS(中分辨率成像光谱仪)卫星,可见光谱宽带数据,表面浮油对太阳反射的调制,允许推断总浮油。多光谱专家系统使用神经网络方法提供快速响应厚度类别图。机载和卫星合成孔径雷达(SAR)提供全天空条件下的天气数据;然而,SAR 通常无法区分厚(>100 μ m)的油膜和薄油膜(至 0.1 μ m)。UAVSAR(无人驾驶飞行器 SAR)的信噪比显著提高,空间分辨率更高,可以成功区分与油膜厚度、表面覆盖率和乳化程度相结合的模式。使用 AVIRIS 研究了现场燃烧和烟羽,并证实了星载 CALIPSO(云气溶胶激光雷达和红外路径探测卫星观测)对燃烧气溶胶的观测。CALIPSO 和水深测量激光雷达数据记录了浅层地下石油,尽管需要辅助数据进行确认。机载高光谱、热红外数据具有夜间和阴天收集优势,并且与 MODIS 热数据一样被收集。然而,解释挑战和缺乏快速反应产品阻碍了其大量使用。快速反应产品是响应利用的关键——数据需求对时间至关重要;因此,高技术准备水平对于遥感产品的运营使用至关重要。DWH 的经验表明,开发和投入使用新的溢油应急遥感工具必须先于下一次重大石油泄漏事件发生。© 2012 Elsevier Inc. 保留所有权利。
摘要 海上石油和天然气作业本身就很复杂,需要采取战略性的方法进行资产生命周期管理,以确保效率、安全和环境可持续性。本综述探讨了先进材料在深水资产管理中的应用,强调了它们在提高运营绩效和寿命方面的作用。本综述首先讨论了与深水作业相关的挑战,包括恶劣的环境条件、高压和腐蚀性流体。这些挑战要求使用能够承受这些条件同时保持结构完整性和运营效率的先进材料。然后,本综述概述了资产生命周期管理的战略方法,强调将先进材料融入设计、建造和维护过程的重要性。这种方法包括根据材料的性能特征、与现有基础设施的兼容性和成本效益来选择材料。此外,本综述还讨论了在深水资产管理中使用先进材料的好处,包括提高耐腐蚀性、增强结构强度和减少维护要求。这些好处转化为
•了解分类和风险分层的生物学假设,治疗学领域的持续/必需研究以及使用对乳腺癌的生物标志物精确医学的使用方法的知识。
图 3-1. 缅因湾水深测量 ...................................................................................................................................................... 4 图 3-2. 深水条件下海上风能传输链路的典型组件* ........................................................................................ 6 图 3-3. 半潜式(左)和驳船式(右)浮动 OSP 概念 ............................................................................................. 7 图 3-4. 浮动变电站的设计概念 ............................................................................................................................. 8 图 3-5. 深水固定基础类型 ............................................................................................................................................. 9 图 3-6. 水下海上变电站概念 ............................................................................................................................. 11 图 3-7. 典型的海上 HVAC 径向链路 ............................................................................................................................. 12 图 3-8. 典型的海上 HVDC 径向链路 ............................................................................................................................. 12 图 3-9. 根据传输距离选择交流还是直流 ............................................................................................................. 13 图 3-10.图 3-11. 基于 VSC-HVDC 的输电技术的可用额定值 ............................................................................................................. 15 图 3-11. 电缆传输功率-距离曲线 ............................................................................................................................. 17 图 4-1. 定制(径向)传输示意图* ............................................................................................................................. 19 图 4-2. 捆绑式海上输电设计* ............................................................................................................................. 20 图 4-3. 具有海上平台互连的海上电网* ............................................................................................................. 21 图 4-4. 典型的协调输电规划流程 ............................................................................................................. 22
背景:2023 年《国防授权法案》(标题 CIII“国家海洋探索” 1 )将现有的联邦委员会组织结构编入法典,包括国家海洋测绘、探索和特性描述 (NOMEC) 委员会,并要求继续实施既定的国家战略 2,以绘制整个美国 EEZ 的海洋地图、确定优先区域,并探索和描述这些优先区域。战略和实施计划 3 呼吁所有对海洋感兴趣的联邦机构(并在 NOMEC 委员会中有代表)开发新方法,以更好地利用多部门伙伴关系和联邦机构与非美国政府实体之间合作的专业知识和资源。BOEM 为制定这一战略做出了重大贡献,并在迄今为止的实施中发挥了重要作用,包括共同领导两个备受瞩目的成功 NOMEC“旗舰”项目。ESP 此前曾通过与 NOAA 和 USGS 建立以任务为导向、由 NOPP 赞助的合作伙伴关系在 MEC 中处于领先地位,包括大西洋峡谷、Deep SEARCH 和 EXPRESS。这些重大努力通过增加对大陆边缘地质、海底群落类型和与中层水域生物连通性的了解,大大推动了科学发展并促进了联邦资源管理。然而,关于深水海底栖息地(即硬底、冷泉、热液喷口)及其相关底栖生物群落的分布、组成和敏感性,目前仍缺乏完整的信息。例如,通过测绘和勘探活动,Deep SEARCH 首次在东南大西洋发现了一种管虫,并在一个意想不到的地区发现了一个复杂的 85 线性英里的 Lophelia pertusa 礁系统。由于此类深水栖息地和动物群可能会受到未缓解的 OCS 活动的负面影响,BOEM 必须继续更好地了解这些生态系统及其对各种产生影响的因素的敏感性。尽管 BOEM 最初因传统能源活动而启动深水研究工作,但人们对关键海洋矿物的兴趣日益浓厚,以及海上浮动风能生产的潜力大大扩展了这些信息需求。因此,通过这笔资金支持的测绘、勘探和描述将主要(但不完全)集中在所有 OCS 区域优先地理区域的这些深水栖息地。由于深水实地工作成本过高,BOEM 必须继续与合作伙伴合作开展研究,以经济高效地满足共同的信息需求。虽然相当成功,但历史上 BOEM 的深水研究模板确实存在固有的局限性。经验教训表明,应该采取更敏捷、更适应性资助流程由战略性定义的标准(如 BOEM 领导的海洋探索和特性描述跨部门工作组的国家战略优先事项报告 4)指导,可以更有效地推进重叠的机构目标,实现国家战略和法律中概述的美国政府更广泛的目标。通过略微改进此类研究伙伴关系的历史性 ESP 采购模式,BOEM 的 ESP 可以扩大潜在合作伙伴的范围,更好地应对短期