土著藏族已经开发了自适应生理机制,以应对Qinghai-Xizang高原的低氧环境。据报道,与缺氧诱导因子途径相关的内皮PAS蛋白1基因(EPAS1)内的遗传变异与藏族之间的低氧适应性有关。大脑在体内表现出最高的氧气消耗,特别容易受到高空缺氧的影响。我们研究了Qinghai-Xizang高原中藏族的结构和功能性脑网络的遗传影响。在这项研究中,招募了135名年轻土著藏族(62名男性和73名女性)作为实验组。 65名与相关特征相匹配的低地汉族人被招募为遗传变异分析的对照组。基于先前的报道,选择了EPAS1中的12个单核苷酸多态性基因座进行基因分型。随后,使用磁共振成像(MRI)获得了大脑的T1结构和静止状态功能图像。单倍型分析表明,藏族中GA和CAAA单倍型的频率明显高于低地汉族个体。藏人被认为是更高的适应性。因此,藏族被归类为遗传适应的藏族(GHA-tibetans)和遗传适应性较低的藏人(GLA-tibetans)。自适应的大脑变化也参与了自发的休息状态活动网络。与Gla-tibetans相比,Gha-tibetans在左中央回和右侧毛氨酸回去,右侧额叶和右后扣带回回去的皮质表面积明显更大,在左PericalCarine Gyrus和右PericalCarine Gyrus和右上角的皮质体积中,右侧额叶和右后扣回去。在多个网络中观察到功能连接显着提高,包括体育体网络,腹侧注意网络,视觉网络和默认模式网络。这项研究揭示了EPAS1遗传变异与土著藏族中大脑结构和功能网络的适应性之间的关系,表明大脑的适应性变化主要集中在与视觉感知,运动控制和相关功能网络相关的区域上。这些大脑变化可能有助于土著人口在极端环境中更好地调节其身体活动。
致谢 ............................................................................................................................. 67
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
5 上海交通大学生物医学工程学院,上海,200030 【摘要】脑机接口(BCI)设备是进行神经刺激和记录的重要工具,在神经系统疾病的诊断和治疗中有着广阔的应用前景。此外,磁共振成像(MRI)是一种有效且非侵入性的全脑信号捕获技术,可以提供大脑结构和激活模式的详细信息。将BCI设备的神经刺激/记录功能与MRI的非侵入性检测功能相结合对脑功能分析具有重要意义。然而,这种结合对神经接口设备的磁和电性能提出了特定的要求。首先探讨了BCI设备与MRI之间的相互作用,随后对二者结合可能产生的安全风险进行总结和整理,从BCI设备的金属电极、导线等危害的来源入手,分析了存在的问题,并总结了目前的研究对策。最后,简要讨论了BCI磁共振安全性的监管问题,并提出了增强相关BCI设备磁共振兼容性的建议。
ISSN 1004‑9037,代码元SCYCE4数据采集与处理杂志卷。37,编号6,2022年11月,第pp。1401-1411 doi:10。16337/j。1004-9037。2022。06。020ⓒ2022撰写的数据采集与处理杂志
丘脑下核(STN)β触发的自适应深脑刺激(ADB)已被证明可提供与常规连续DBS(CDB)相当的临床改进,其能量较少,而能量较少,而刺激较少诱导的副作用。但是,几个问题仍未得到解决。首先,在自愿运动之前和期间,STN Beta谱带功率的逻辑逻辑降低正常。ADBS系统将在帕金森氏病患者运动过程中减少或停止刺激,因此与CDB相比可能损害运动性能。第二,在以前的大多数ADB研究中,Beta功率在400毫秒的时间段内进行了平滑和估计,但是较短的平滑周期可能具有更大的优势,即对Beta功率的变化更加站点,这可以增强运动性能。在这项研究中,我们通过使用标准的400毫秒和较短的200毫秒平滑窗口来评估STNβ触发的ADB的有效性来解决这两个问题。帕金森氏病的13人的结果表明,减少量化β的平滑窗口的确会导致β爆发持续时间缩短,这是通过增加β爆发的数量短于200 ms,并且更频繁地打开/关闭刺激剂,但没有造成的效果。与没有DBS相比,ADB和CDB都在同等程度上提高了运动性能。此外,与没有DBS相比,ADB显着地证明是震颤,但不如CDB。二级分析表明,β功率下降和GAM MA功率在预测更快的运动速度方面存在独立的影响,而Beta事件的减少相关的DENCHRONIANINID(ERD)预先固定了更快的运动启动。CDB抑制了Beta和伽玛的抑制作用和伽玛,而在CDB和ADB中,Beta ERD与无DBS相比降低到相似的水平,这共同解释了CDB和ADB期间CDBS运动的SIMI LAR性能提高。这些结果表明,受STN触发的ADB有效地改善了帕金森氏病患者的运动过程中运动性能,而平滑窗口的缩短不会导致任何额外的行为益处。为帕金森氏病开发ADBS系统时,可能没有必要跟踪非常快的beta dy namics;结合β,伽玛和运动解码的信息可能会更有益于最佳治疗震颤所需的其他生物标记。
丘脑下核(STN)β触发的自适应深脑刺激(ADB)已被证明可提供与常规连续DBS(CDB)相当的临床改进,其能量较少,而能量较少,而刺激较少诱导的副作用。但是,几个问题仍未得到解决。首先,在自愿运动之前和期间,STN Beta谱带功率的逻辑逻辑降低正常。ADBS系统将在帕金森氏病患者运动过程中减少或停止刺激,因此与CDB相比可能损害运动性能。第二,在以前的大多数ADB研究中,Beta功率在400毫秒的时间段内进行了平滑和估计,但是较短的平滑周期可能具有更大的优势,即对Beta功率的变化更加站点,这可以增强运动性能。在这项研究中,我们通过使用标准的400毫秒和较短的200毫秒平滑窗口来评估STNβ触发的ADB的有效性来解决这两个问题。帕金森氏病的13人的结果表明,减少量化β的平滑窗口的确会导致β爆发持续时间缩短,这是通过增加β爆发的数量短于200 ms,并且更频繁地打开/关闭刺激剂,但没有造成的效果。与没有DBS相比,ADB和CDB都在同等程度上提高了运动性能。此外,与没有DBS相比,ADB显着地证明是震颤,但不如CDB。二级分析表明,β功率下降和GAM MA功率在预测更快的运动速度方面存在独立的影响,而Beta事件的减少相关的DENCHRONIANINID(ERD)预先固定了更快的运动启动。CDB抑制了Beta和伽玛的抑制作用和伽玛,而在CDB和ADB中,Beta ERD与无DBS相比降低到相似的水平,这共同解释了CDB和ADB期间CDBS运动的SIMI LAR性能提高。这些结果表明,受STN触发的ADB有效地改善了帕金森氏病患者的运动过程中运动性能,而平滑窗口的缩短不会导致任何额外的行为益处。为帕金森氏病开发ADBS系统时,可能没有必要跟踪非常快的beta dy namics;结合β,伽玛和运动解码的信息可能会更有益于最佳治疗震颤所需的其他生物标记。
迫切需要强调新的方法来治疗和增强药物使用障碍(SUD)治疗,特别是对于缺乏药物选择的物质。非药理学方法是感兴趣的,特别是对于那些无法忍受药物或反应不足的个体。深脑刺激(DBS)是神经调节的侵入性形式之一,是一种手术程序,将电极植入特定的大脑区域并通过植入的脉冲发生器刺激。已经曾是食品药品监督管理局(Food and Drug Administration),用于帕金森氏病,基本震颤,肌张力障碍和强迫症(OCD)。DBS在临床研究中对抑郁症,图雷特氏病,饮食失调,创伤性脑损伤,阿尔茨海默氏病和慢性疼痛等疾病的临床研究表现出了希望。刺激参数是根据靶向大脑区域和患者反应进行编程的。dbs也被探讨为SUD的潜在方法。[18,46,47,50]