摘要 - 由于其在许多行业中的各种应用,因此iT的突出性正在增长。他们从现实世界中收集信息并通过网络发送。在过去几年中,小型计算设备的数量,例如RFID标签,无线传感器,嵌入式设备和IoT设备的数量已大大增加。预计他们会产生大量敏感数据,以控制和监测。这些设备的安全性至关重要,因为它们处理了宝贵的私人数据。需要加密算法来保护这些精致的设备。设备的性能受到RSA或AES等传统加密密码的阻碍,RSA或AES易于破解。在物联网安全领域中,轻巧的图像加密至关重要。用于图像加密,大多数当前使用的轻量级技术都使用单独的像素值和位置修改。这些方案受其高脆弱性的限制。本文使用合并的转换和扩展(CTE)和动态混乱系统引入了用于医疗物联网设备的轻质密码学(LWC)算法。建议的系统是根据跨熵,UACI和NPCR评估的。通过实验结果证明,建议的系统非常适合医学物联网系统,并且具有很高的加密和解密效率。所提出的系统的特征是其记忆使用率低和简单性。
摘要:本研究提出将基于 BB84 协议的量子密钥分发 (QKD) 与改进的逻辑映射 (ILM) 相结合,以提高数据传输的安全性。该方法将 BB84 的量子密钥形成与 ILM 加密相结合。这种组合创建了一个额外的安全层,默认情况下,BB84 上的操作只是 XOR 替换,而 ILM 的加入会在量子密钥上创建排列操作。实验使用多种量子测量进行测量,例如量子比特误码率 (QBER)、极化误码率 (PER)、量子保真度 (QF)、窃听检测 (ED) 和基于纠缠的检测 (EDB),以及经典密码分析,例如比特误码率 (BER)、熵、直方图分析、归一化像素变化率 (NPCR) 和统一平均变化强度 (UACI)。结果表明,该方法获得了令人满意的结果,特别是QF和BER达到了完美的水平,EBD也达到了0.999。
人们对使用近期量子计算机来模拟和研究量子力学和量子信息科学的基础问题非常感兴趣,例如由非时间有序相关器 (OTOC) 测量的加扰。在这里,我们使用 IBM Q 处理器、量子误差缓解和编织 Trotter 模拟来研究 4 自旋 Ising 模型中高分辨率算子扩展作为空间、时间和可积性的函数。通过使用物理激励的 OTOC 固定节点变体,可以达到 4 自旋同时保持高电路保真度,从而可以在没有开销的情况下估计加扰。我们发现了混沌状态下弹道算子扩展的清晰特征,以及可积状态下算子定位。这里开发和展示的技术开辟了使用基于云的量子计算机研究和可视化加扰现象以及更普遍的量子信息动力学的可能性。
摘要 - 多项式函数一直是多翼混沌系统(MWCSS)的电路实现和工程化的主要限制。为了消除这种瓶颈,我们通过在Sprott C系统中引入正弦函数来构建一个简单的MWC,而无需多项式函数。理论分析和数值模拟表明,MWC不仅可以使用任意数量的黄油量产生多量器的吸引子,而且还可以通过多个ple方式来调整黄油液的数量,包括自我振荡时间,控制参数和初始状态。为了进一步探索所提出的MWC的优势,我们使用可循环可用的电子元素实现了其模拟电路。结果是,与传统的MWCS相比,我们的电路实施大大减少了电子组件的消耗。这使MWCS更适合许多基于混乱的工程应用程序。更重要的是,我们提出了MWC在混沌图像加密中的应用。直方图,相关性,信息能量和钥匙灵敏度表明,简单的图像传感方案具有很高的安全性和可靠的加密性能。最后,我们开发了一个可编程的门阵列测试平台,以实现基于MWCS的图像加密系统。理论分析和实验结果都验证了所提出的MWC的可行性和可用性。