本文介绍的混频器可以在国际电信联盟分配给 5G 的第一个毫米波频段(24.25 至 27.5 GHz)中产生射频信号。图 3 显示了转换增益 CG 与 LO 频率的关系,范围从 26.25 到 29.5 GHz。CG 为正值,高于 2 dB。此外,为了验证 IF、LO 和 USB 频率下的谐波抑制,图 4 显示了其输出功率谱。在 LO 频率带宽内,混频器具有良好的抑制水平。对于 28.25 GHz 的 LO 频率,USB 信号的抑制最大,约为 25 dB。并且在 LO 带宽内,IF 信号的抑制超过 30 dB。在 27.4 GHz-LO 频率下,LO 抑制在混频器输出端达到最大值 15 dB,对于其他频率,LO 抑制降低,最坏情况下高于 4 dB。
提出了一种采用 180 nm CMOS 工艺的上变频混频器。本研究详细阐述了几种混频器的类型、混频器的性能参数、混频器的拓扑结构以及提高混频器性能的设计技术。主要目的是提高增益、增加线性度和噪声系数。有四种金属层可供设计。对以前发表的研究进行了比较,并提出了低功耗混频器的最佳拓扑结构。关键词:混频器,噪声系数,变频增益,CMOS 1. 简介超宽带 (UWB) 系统是无线通信的主要技术之一。混频器是将 RF 信号转换为基带信号的关键。混频器是 RF 通信系统中最重要的元件之一。当两个不同的输入频率插入另外两个端口时,它被设计为在单个输出端口产生和频和差频。插入两个输入端口的两个信号通常是本振信号和输入(对于接收器)或输出(对于发射器)信号。要产生新频率(或新频率),需要非线性设备。射频混频器本质上是一种将信号从一个频率移到另一个频率的设备。混频器产生输入频率、LO 频率及其互调产物的谐波。这些谐波增加了混频器的非线性。设计混频器的基本目标是抑制谐波。理想的混频器是一个乘法器电路。理想的混频器将一个载波频率周围的调制转换到另一个载波频率。由于混频器是一种非线性设备,因此它无法执行频率转换。
1 摘要 — 基于超快光电探测器中的光外差(光)混合的 THz 源非常有前景,因为它们在室温下工作,可能结构紧凑、成本高效,并且最重要的是频率可调性广。然而,它们的广泛使用目前受到 THz 频率下 µW 范围的可用功率水平的阻碍。我们在此介绍一种行波结构,其 THz 频率下的相干长度为毫米级,为大有源面积(~4000 µm 2 )光混合设备开辟了道路,该设备能够处理超过 1 W 的光泵浦功率,远远超出了使用小有源面积(<50 µm 2 )的标准集总元件设备的能力,需要保持与 THz 操作兼容的电容水平(<10 fF)。它基于氮化硅波导,该波导耦合到嵌入共面波导中的膜支撑低温生长 GaAs 光电导体。根据本研究详细阐述的该器件的光电子模型,预计毫瓦级功率可达到 1 THz,甚至高于 1 µW,最高可达 4 THz。实验中,使用两个 780 nm-DFB 激光器产生的拍音测量 1 毫米长结构的频率响应,最高可达 100 GHz,清楚地显示了预期的行波特征,即当反向行波的贡献完全消除时,衰减 6 dB,最终达到 ~50 GHz,随后达到 ~100 GHz 的恒定水平。在行波状态下进行操作的实验演示是实现该概念在功率水平和频率带宽方面的最初承诺的第一步。
FM5812 芯片的结构框架见图 1 ,首先芯片内部锁相环产生一个 5.8G 的射频微波信号,经过驱动级放 大由发射天线发出,当射频微波信号遇到移动的物体,发射信号和反射信号会产生多普勒雷达效应,即它 们之间有一定的频率差。这时反射信号通过接收天线,经过低噪声放大器放大和发射信号在混频器内进行 混频,混频器经过处理得到一个中频信号,再经过低通滤波器过滤掉噪声,同时将中频信号进行放大。最 后通过内部集成 MCU 进行数字处理输出高低电平,进而判断感应器周围是否存在移动的物体。
摘要 — 本文主要介绍了9~27 GHz频率范围内两种具有镜像通道抑制功能的宽带混频器的研制特点。该研究的目的是确定复杂多功能微波节点建模问题的最佳解决方案。讨论了本振放大器、低噪声放大器、混频器等功能单元的研制过程。对计算出的特性与制造的原型的测量结果进行了比较。还关注了混频器功能单元中的场效应晶体管、电阻器和电容器的制造技术。科学新颖性在于开发在单个晶体上包含多个功能单元的产品的独特性。由此设计出了两款具有镜像通道抑制功能的外壳式混频器,其性能指标可以替代国外ADI公司的同类产品。
变容二极管调谐 LC 振荡器与分频器一起为 AM 和 FM 前端混频器提供 LO 信号。VCO 的工作频率约为 160 MHz 至 256 MHz。在 FM 模式下,LO 频率除以 2 或 3。这些分频器生成用于 FM 前端混频器以进行镜像抑制的同相和正交相位输出信号。在天气波段模式下,LO 信号直接相移以生成同相和正交相位信号。在 AM 模式下,LO 频率除以 6、8、10、16 或 20,具体取决于所选的 AM 波段。
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
增强套件包括:发射器,采用奢华的碳纤维饰面和新的开创性软件,16 通道接收器,集成 35 A 电池支架和 WINGSTABI 技术,采用阳极氧化铝航空外壳。大师版软件比所有前代产品更快更好,并且只需不到 2 毫秒即可完成所有计算!新功能精选:12 个飞行阶段,11 个发射器控件,功能选择不受限制,带有单独开关的教练模式,中性补偿和混频器功能,混频器输入的 9 点曲线,带有 2、3、5 或 9 点选项的伺服曲线,新的 MULTICOPTER 和 WINGSTABI 模板。PROFI TX 发射器具有多功能、灵活的设置设施,适用于所有类型的
模拟混频器由键控信号控制,以在视频 DAC 的输出和模拟 RGB 输入之间切换。模拟 RGB 输入需要以直流耦合的方式与模拟混频器接口,而且这些 RGB 输入仅限于没有同步电平基座的 RGB 信号。可以通过设置 I 2 C 总线位 KEN = 1 来启用键控控制。可以生成两种键控:一种是外部键(当 KMOD[2:0] 全部为逻辑 0 时来自 EXTKEY 引脚),另一种是内部像素色键(当 KMOD[2:0] 不全部为逻辑 0 时)通过将输入像素数据与内部 I 2 C 总线寄存器值 KD[7:0] 进行比较而生成。受 KMOD[2:0] 位控制,有 4 种方式可以比较像素数据(见表 8)。
Alyosha C. Molnar 康奈尔大学 超越 CMOS 的 N 路径混频器 Pascal Chevalier ST Microelectronics 用于有线、无线和卫星通信应用的 55 纳米灵活 SiGe BiCMOS 技术