超过13,000种化学品被添加到塑料(“添加剂”)中,以提高塑料产品的性能,耐用性和生产。它们分为多种化学类别,包括阻燃剂,光稳定剂,抗氧化剂和增塑剂。在过去十年中,对海洋环境中塑料添加剂的研究有所增加,但缺乏方法论标准化。为了指导塑料添加剂的未来测量,我们汇编了一个文献的首个文献数据集,评估了海洋环境中的塑料添加剂,并通过样品类型(塑料碎片,海水,沉积物,生物群)进行了描述。使用此数据集,我们进行了荟萃分析来总结科学状态。目前,我们的数据集包括1978年至2023年5月之间发表的217个出版物。大多数出版物分析了从欧洲和亚洲收集的生物群中的塑料添加剂。分析集中于增塑剂,溴化阻燃剂和双酚。常见的样品制备技术包括溶剂 - 塑料,沉积物和生物植物的搅拌提取
摘要由于其弱特性而将使用硅橡胶作为植入物的使用受到限制。在这项研究中,研究了各种增强剂的影响,例如TIO 2或SIO 2纳米颗粒,碳或聚丙烯纤维微增强对机械,热和粘弹性橡胶复合物具有RTV-4125 Matrix的机械,热和粘弹性特性的影响。通过多项测试评估复合材料,包括拉伸,压缩,FTIR,TGA,DMTA和水吸附测试。发现复合材料的拉伸强度和压缩应力通过添加增强剂增加,对SIO 2观察到的拉伸强度产生了最显着的影响,并且在观察到的0.5菌株的压缩应力上,对聚丙烯纤维的压缩应力产生了最明显的影响。此外,随着加固的添加,基质的吸水量增加,二氧化钛纳米颗粒的增加最高。TGA分析表明,所有复合材料的热稳定性都比普通基质高,并且SR-C纤维复合材料的降解温度最高,而SR-TIO 2观察到的最高降解速率。此外,DMTA分析表明,TIO 2纳米颗粒大大降低了基质的玻璃过渡温度(%28.5),而其他增强件对此温度的影响可忽略不计。引入钢筋对机械,热和粘弹性
在这篇评论中,我们探讨了食品添加剂对肠道健康的影响。食品添加剂,例如防腐剂,抗氧化剂和着色剂,被广泛用于改善食品质量并延长保质期。但是,它们对肠道学生态学的影响可能构成健康风险。从食物添加剂的基本功能开始,以及肠道微生态的重要性,我们详细分析了添加剂如何影响肠道菌群的多样性,氧化应激和免疫反应。此外,我们研究了食物添加剂和肠道疾病(包括炎症性肠病和肠易激综合征)之间的关联,以及时间,剂量和个体差异如何影响人体对添加剂的反应。我们还评估食品添加剂的安全性和监管政策,并探索自然添加剂的潜力。最后,我们提出了未来的研究方向,强调了风险评估方法的完善和创造更安全,创新的添加剂的创造。
摘要:添加剂制造是使用CAD数据逐层构建组件的术语;它也称为分层制造或3D打印。添加剂制造的主要优点是不使用模具或工具的建筑组件的能力。AM过程的五个主要类别包括粉末床融合(PBF),直接能量沉积(DED),材料喷射(MJ),粘合剂喷射(BJ)和板层压板(SL)。传感器可以定义为响应物理刺激并传输产生的脉冲的设备。传感器技术已在高级制造,航空航天,生物医学和机器人应用中广泛采用。常用的传感器是温度传感器,应变传感器,生物传感器,环境传感器和可穿戴传感器等。添加剂制造技术可以用较少的人工制造传感器和微流体设备。本文着重于增材制造过程开发的各种传感器,并审查了它们在特定目的的实际应用。
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。
在过去的几十年中,增材制造(AM)为通过广泛的市售机器铺平了多个过程的道路。基准伪影以设置共同参考。在本文中,提出了对不同AM基准伪像设计方法的综述。更准确地说,描述了设计方法的演变。最初,通过确定生产定义功能的能力来评估增材制造机。的确,AM基准伪影设计通过定义简单的几何形状来遗传传统的减法制造方法。但是,由于AM可用的自由,没有标准的伪像可以足够代表研究标准的多样性。此外,不考虑计量方面。面临各种基准伪像,拟议的指南然后着重于定义的系统设计方法而不是标准伪像。已经提出了几种方法来帮助设计适合考虑标准的基准伪像。然而,发现一些传统的简单几何形状与测量仪器不兼容,例如,几乎无法表征AM自由形式表面的仪器。这就是为什么最近要在人工制品设计阶段考虑测量问题和不确定性的重要努力的原因。正如本文总结的那样,现在倾向于以更高的方式设计基准的伪像,以整合依赖统计建模和仪器比较的整个制造后测量过程。关于提高的赌注,提供了一套最终建议,以和解制造商和计量师的观点,以基准的人工制品设计。
[1] F. A. Cruz Sanchez,H。Boudaoud,M。Camargo和J. M. Pearce,“添加剂制造中的塑料回收:系统文献综述和循环经济的机会”,J。干净。prod。,卷。264,p。 121602,2020年8月,doi:10.1016/j.jclepro.2020.121602。[2] F. Pignatelli和G. Percoco,“大格式添加剂制造业的应用和市场的审查,重点是基于聚合物颗粒的3D打印”,Prog。加法。制造,第1卷。7,不。6,pp。1363–1377,2022年12月,doi:10.1007/s40964-022-00309-3。[3] N. Tagscherer,A。M。Bär,S。Zaremba和K. Drechsler,“对热塑性复合材料的大规模挤出添加剂制造中参数变化的机械分析”,J。Manuf。mater。Process。,第1卷。6,不。2,p。 36,3月。2022,doi:10.3390/jmmp6020036。[4] E. Jo等人,“用纤维增强聚合物复合材料的大规模添加剂制造优化层时间”,Soc。adv。mater。Process Eng。,2022年5月。[5] H. R. Vanaei等人,“迈向理解温度对3D打印部分的粘结强度,尺寸和几何形状的影响”,J。mater。Sci。,卷。55,否。29,pp。14677–14689,2020年10月,doi:10.1007/s10853-020-05057-9。[6] P. Consul,A。Chaplin,N。Tagscherer,S。Zaremba和K. Drechsler,“大规模结晶多氧酮碳复合材料的大规模添加剂中的层间强度”,Polym。int。,卷。70,否。8,pp。1099-1108,2021,doi:10.1002/pi.6168。
添加剂制造/合金设计和材料选择的材料和过程简介。。。。。。。。。3 Rachel Boillat,Sriram Praneeth Isanaka和密苏里州科学技术大学传统合金系统的Frank Liou。。。。。。。。。。。。。。。。。。。。。。。。。。3增材制造过程。。。。。。。。。。。。。。。。。。。。5使用增材制造的加工性。。。。。。。。。。。。。8材料微结构,缺陷以及对机械行为的影响。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8定制合金的开发。。。。。。。。。。。。。。。。。。融合金属添加剂制造中的11个过程结构关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 Michael Kirka,橡树岭国家实验室缺陷结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16热签名。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个标准结构。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个位点特定的微观结构控制。。。。。。。。。。。。。。。。。。19其他因素影响结构。。。。。。。。。。。。。。。。。。。金属添加剂制造中的20种结构 - 核关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 23疲劳特性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 24测试栏属性适用于组件性能。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 26与传统制造相比。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>23 Joy Sackeck,科罗拉多州矿业学校静态特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23疲劳特性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24测试栏属性适用于组件性能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26与传统制造相比。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。金属添加剂制造中的26个过程缺陷。。。。。。。。。。。。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30激光定向 - 能源沉积。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 36粘合剂喷射。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 41过程优化。 。 。 。 。 。 。30 Scott M. Thompson,堪萨斯州立大学Nathan B. Crane,Brigham Young University Laser粉末床融合。。。。。。。。。。。。。。。。。。。。。。。。。30激光定向 - 能源沉积。。。。。。。。。。。。。。。。。。。36粘合剂喷射。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41过程优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53种方法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55方法库存。 。 。 。53 Michael,Michael Syrka和Vincent Paquit,实验室过程优化。。。。。。。。。。。。。。。。。。53种方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53算法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55方法库存。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。56闭环反馈控制。。。。。。。。。。。。。。。。。。。。。57数据驱动的优化。。。。。。。。。。。。。。。。。。。。。。。。。57添加剂制造中的材料建模。。。。。。。。。。。。。。。60 Ashley D. Spear,犹他大学微观结构建模。。。。。。。。。。。。。。。。。。。。。。。。。。60个盲目建模挑战。。。。。。。。。。。。。。。。。。。。。。。。64个物理驱动与数据驱动的模型。。。。。。。。。。。。。64个用于金属添加剂制造的零件尺度工艺建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。67 Kyle L. Johnson,Dan Moser,Theron M. Rodgers和Michael E. Stender,Sandia National Laboratories热建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。67固体力学模拟 - 放置应力和失真。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68微结构模拟。。。。。。。。。。。。。。。。。。。。。。。。。70分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。72
免责声明本文件是作为由美国政府机构赞助的工作的帐户准备的。美国政府和劳伦斯·利弗莫尔国家安全,有限责任公司,或其任何雇员均不对任何信息,设备,产品或流程的准确性,完整性或有用性承担任何法律责任或责任,或承担任何法律责任或责任,或者代表其使用不会侵犯私有权利。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或Lawrence Livermore National Security,LLC的认可。本文所表达的作者的观点和意见不一定陈述或反映美国政府或劳伦斯·利弗莫尔国家安全,有限责任公司的观点和观点,不得用于广告或产品代表目的。