• 除非 Timken 另有指示,否则产品应保存在原包装中,直到准备投入使用为止。• 请勿移除或更改包装上的任何标签或模板标记。• 产品应以适当的方式存放,以免包装被刺穿、压碎或以其他方式损坏。• 产品从包装中取出后,应尽快投入使用。• 从散装容器中取出非单独包装的产品时,应在取出产品后立即重新密封容器。• 请勿使用已超过 Timken 保质期指南声明中定义的保质期的产品。• 存储区域温度应保持在 0º C (32º F) 至 40º C (104º F) 之间;应尽量减少温度波动。• 相对湿度应保持在 60% 以下,且表面应保持干燥。
我们开发了一种非标准的原子钟概念,其中黑体辐射偏移 (BBRS) 及其温度波动可以显著抑制(抑制一到三个数量级),而与环境温度无关。抑制基于这样一个事实:在具有两个可访问时钟跃迁(频率为 ν 1 和 ν 2 )且暴露于相同热环境的系统中,存在一个“合成”频率 ν syn ∝ ( ν 1 − ε 12 ν 2 ),该频率基本不受 BBRS 的影响。例如,对于 171 Yb +,可以创建一个时钟,其中 BBRS 可以在接近室温(300 ± 15 K)的较宽间隔内被抑制到 10 − 18 的分数水平。我们还提出了一种使用稳定在 ν 1 和 ν 2 频率的光频率梳发生器来实现我们的方法。这里频率 ν syn 作为梳状谱的组成部分之一产生,可以用作原子标准。
飞机蒙皮预处理和涂装是航空工业的重要组成部分。航空涂料在涂料行业中只占很小的市场份额,但却是要求极高的专用涂料,因为航空涂料一直处于负荷极高的外界环境中,与其他品种的涂料相比,其技术要求非常特殊,这是因为它必须满足极端的使用条件。航空涂料必须经受温度、气压的变化,经受不同的空气湍流。无论飞行条件如何,航空涂料都需要经受温度波动、高强度紫外线照射、潮湿环境、化学物质侵入(如燃油、液压油、清洁化学品)和腐蚀的考验,此外,航空公司必须尽可能降低涂层厚度和质量,以减少能源消耗。因此,航空涂料必须是性能非常高的涂料,轻质、高性能和环境友好是航空涂料的发展方向。
压力独立操作 每个区域终端控制器均包含 Enviro-Tec 独有的流量补偿压差传感器。在 VAV 系统中,只要任何区域控制器打开或关闭其阻尼器,管道中的静压就会发生变化。该流量传感器使区域控制器能够计算出向该区域供应了多少空气,这样即使管道中的静压发生变化,它也能保持气流恒定。这称为压力独立操作。压力独立意味着每个区域不受系统中其他区域的影响,并可防止系统持续的温度波动和嘈杂的呼吸。此外,区域控制器可以准确地保持最低通风气流水平,以确保充分通风,同时最大限度地提高能源效率。
摘要研究了夜间温度对普通鸟樱桃(Prunus Padus L.)叶片不对称的影响。在2021 - 2024年5月的Elektrostal(莫斯科地区)的温度波动进行了研究。在5月的夜间温度上有统计学上的显着差异。白天和黑夜之间温度的差异没有显示出不对称性的偏差。在2022年和2024年(-1°C)中观察到低温。在这些年中,获得了波动不对称的统计学意义指数。在2022年 - fa = 0,002和2024 - fa = 0,004(分别为p = 0,01和p = 0,02)。这项工作显示出春末霜冻对李子padus叶片叶片的形态特征的显着影响,表明该物种发育的稳定性降低。
Lunar Trailblazer 是 NASA 的一项 SIMPLEx 任务,计划于 2024 年底发射。该任务的目标是继续在月球上寻找各种形式的水,并探索温度波动对其的影响。Lunar Trailblazer 的任务操作系统和地面数据系统 (MOS/GDS) 由加州理工学院的 IPAC 负责,任务设计和导航由 JPL 负责。Lunar Trailblazer 使用 NASA JPL 和 NASA Ames 分别开发的 AMMOS 仪器工具包 (AIT) 和 Open MCT 软件进行 DSN 连接、指挥、遥测显示以及遥测存储和趋势分析。Lunar Trailblazer 是一项目标驱动的任务,用于目标选择和调度的科学规划系统是一个用于目标跟踪的自定义 Postgres 数据库。本文介绍了 LTB 的地面系统及其开发,特别关注了本科实习生的贡献。
我们的办公室很小,疫苗储存单元的空间有限。如果宿舍式冰箱不是一种选择,我们可以使用什么?“宿舍式”冰箱是一种小型组合式冰箱/冷冻机,配有一个外门和一个蒸发器板(冷却盘管),通常位于冰箱内的制冰机隔间(冷冻室)内。这种类型的装置存在严重的温度控制和稳定性问题。但是,可以使用紧凑的“专用”或“药房级”冰箱和冷冻机,这些冰箱和冷冻机经过精心设计,可在整个单元内保持均匀的温度,这些冰箱和冷冻机可能满足小型办公室的需求。一般来说,该单元必须足够大,以存储一年中最大的疫苗库存而不会拥挤,并存储水瓶(在冰箱中)和冷冻冷却剂包(在冷冻室中),以最大限度地减少温度波动。
摘要:太阳能电池板中电子组件的有效冷却对于优化其性能和寿命至关重要。这项研究研究了相变材料(PCM),尤其是纳米复合材料的利用,以增强太阳能电池板中的电子冷却。纳米复合PCM具有独特的热性能和可扩展性,使其成为降低温度波动并提高整体系统效率的有吸引力的候选者。通过实验验证和仿真研究,本研究探讨了太阳能电池板中基于纳米复合PCM的冷却系统的设计,集成和优化。在提高电子组件的可靠性,提高能量产量和延长系统寿命方面,该方法的有效性得到了证明。这项研究通过提供了利用创新的PCM解决方案用于电子冷却应用的洞察力,从而有助于太阳能电池板技术的发展。
此热泵使用存储在地面上的太阳能。此太阳能始终可用。无论是白天还是晚上,夏季还是冬天,甚至是无限的,因为它会不断更新。由于其相对恒定的地面温度,地球是一个特别好的热量储存。从1.3 m的深度开始,无论外面有多冷,几乎没有任何温度波动。我们将扁平收集器用于我们的系统(一个铺设的广泛的管道系统,该系统在地面表面下方约1.3 m,是通过深钻孔(50-150 m)插入的地热探针,或者特别合适的地热篮子,在空间有限的地方特别合适。与PVT的组合也是新的收集器光伏热收集器(PVT),将PV模块和太阳热收集器组合在一个外壳中。前者将太阳辐射转换为电力,而后者则将产生的废热作为热泵的热源。
随着近年来建筑物的能源消耗的增加,在建筑行业有效地使用能源已经变得迫切了。相变材料(PCM)可以通过吸收或释放大量热量来调节环境温度,当周围温度变化,具有高能量存储密度的优势和降低温度波动的优势,[1]已成为研究构建能源效率的热点。将PCM组合到建筑物中可以有效地改善建筑物的热舒适度,并将峰值电荷转移到非高峰期,从而减少电能消耗以实现建筑物中高能效率。[2]通常,应用于建筑能源效率的PCM主要包括无机PCM,有机PCM和复合PCM。[3]根据设计机制,相变材料在建筑能源效率中的应用主要反映在两个方面:被动建筑能源设计和主动建筑能源设计(图1)。