4月份的MTA/BMA(M/F/D)科学技术助理作为完整的时间职位。该职位最初限于3个月;计划了长期的观点。您的责任领域是该研究所神经遗传学研究小组(Praschberger博士)研究项目的科学技术支持。成功的候选人可以期待各种责任领域,高水平的参与室以及学习令人兴奋和创新的方法的机会。特别是,重点是新果蝇模型的生产和表型,以及基于人类干细胞的神经遗传疾病的神经元细胞模型(尤其是模型中的转基因和CRISPR敲击,但也是RNAi和敲除模型) - 这是通过在工作过程中的密切合作来学到的。如果您有任何疑问,请联系:roman.praschberger@i- med.ac.at.。先决条件是一项完整的培训,是MTA文凭,科学学士学位,硕士,M.Sc。的生物医学分析师。或类似成功的候选人还具有在实验室工作,团队合作以及独立参与和对科学问题的兴趣中的高度准确性和责任感的特征。需要经典湿法实验室方法,例如PCR,质粒矢量的克隆,蛋白质印迹以及对基于计算机的分析方法的高水平和开放性的知识。特殊方法,例如共聚焦显微镜。此用途的每月最低工资目前为3,071.30欧元(每年14倍),并且可以通过对活动特定的 - 特定前经验和其他与工作场所特殊特征相关的活动的质疑和其他赔偿组成部分来增加集体协议法规。如果您有兴趣,请发送您的申请文件,说明参考“ TA-2025-神经遗传学”:Dr.Med教授。J. Zschocke,博士,人类埃斯塔斯研究所 1/1楼,6020 Innsbruck或通过电子邮件至:humgen@i-med.ac.atJ. Zschocke,博士,人类埃斯塔斯研究所1/1楼,6020 Innsbruck或通过电子邮件至:humgen@i-med.ac.at
微转移打印 (µ TP) 是一种很有前途的技术,可用于将 III-V 材料异质集成到基于 Si 的光子平台中。为了通过增加 III-V 材料和 Si 或 SiO 2 表面之间的粘附性来提高打印产量,通常使用像苯并环丁烯这样的粘附促进剂作为中间层。在这项工作中,我们展示了在没有任何粘合剂中间层的 SiO 2 中间层上基于 InP 的试样的 µ TP,并研究了无粘合剂键合的机理。源试样是基于 InP 的试样堆栈,位于牺牲层上,该牺牲层通过使用 FeCl 3 的化学湿法蚀刻去除。对于目标,我们在 8 英寸晶圆上制造了非晶硅波导,并用高密度等离子 SiO 2 封装,并通过化学机械抛光程序进行平坦化。我们使用 O 2 等离子体激活源和目标,以增加试样和基板之间的粘附性。为了更好地理解键合机理,我们应用了几种表面表征方法。利用原子力显微镜测量了等离子体激活前后 InP 和 SiO 2 的均方根粗糙度。利用光学台阶仪估算目标晶圆上微转移印刷源试样的台阶高度。利用 InP 的拉曼峰位置映射来分析等离子体激活前后 SiO 2 上可能的应变和接触角测量值,以观察表面亲水性的变化。利用 X 射线光电子能谱分析来表征 InP 源的 P2p、In3d、O1s 以及 SiO 2 目标的 Si2p、O1s 的表面能态。我们的结果表明,无需应变补偿层,就可以通过 µ TP 直接键合 InP 试样。这样,为使用 µ TP 进行 InP 异质集成提供了一种与互补金属氧化物半导体兼容的有希望的途径。
使用六氟化硫 (SF 6 ) 等离子体对硅 (Si ) 进行低偏压蚀刻是制造电子设备和微机电系统 (MEMS) 的宝贵工具。这种蚀刻提供了几乎各向同性的蚀刻行为,因为低电压偏置不会为离子提供足够的垂直加速度和动能。由于这种近乎各向同性的行为,上述等离子体蚀刻可作为湿法蚀刻的替代方案,例如在 MEMS 和光学应用中,因为它提供了更清洁、更精确的可控工艺。然而,各向同性的程度以及最终的表面轮廓仍然难以控制。在这项工作中,我们将三维特征尺度地形模拟应用于 Si 中的低偏压 SF 6 蚀刻实验,以帮助工艺开发并研究控制最终表面几何形状的物理蚀刻机制。我们通过准确再现三个不同的实验数据集并详细讨论地形模拟中涉及的现象学模型参数的含义来实现这一点。我们表明,与传统的严格各向同性和自下而上的方法相比,我们的现象学自上而下的通量计算方法更准确地再现了实验结果。反应堆负载效应被视为模型蚀刻速率的普遍降低,这通过比较不同负载状态下模拟的蚀刻深度与实验确定的蚀刻深度得到支持。我们的模型还能够使用给定反应堆配置的单个参数集,准确地再现不同掩模开口和蚀刻时间的报告沟槽几何形状。因此,我们提出模型参数,特别是平均有效粘附系数,可以作为反应堆配置的代理。我们提供了一个经验关系,将反应堆配方的平均粘附系数与可测量的蚀刻几何各向同性程度联系起来。这种经验关系可以在实践中用于 (i) 估计独立实验的平均有效粘附系数和 (ii) 微调蚀刻几何形状。
印度的气候变化事实表8温度升高印度的平均温度在1901年至2018年之间的平均温度升高0.7°C。到21世纪末,印度的平均温度预计将在没有重大行动的情况下升高4.4°C(相对于1976- 2005年的水平)。与1976 - 2005年的基线期相比,到本世纪末,夏季热浪的频率预计将增加3-4倍。降雨模式和季风夏季季风降雨(6月至9月)从1951年到2015年下降了6%,尤其是在印度 - 远程平原和西高止山脉上。极端降雨事件有所增加,每天降雨量超过150毫米,印度中部(1950- 2015年)上升了75%。季风可变性预计会增加,预计会有更强烈的湿法。干旱受干旱影响的地区在1951年至2016年之间每十年增加了1.3%。印度中部,西南海岸,南部半岛和印度东北部平均每十年经历两次以上的干旱。到21世纪末,印度可能会看到干旱频率和强度的增加。印度洋的变暖和海平面上升印度洋已加热1°C(1951- 2015年),高于全球平均水平0.7°C。北印度洋的海平面每年3.3毫米(1993–2017)上升,这是过去几十年的显着加速。到2100年,北印度洋的海平面预计将上升300mm。气候模型预测,由于海洋变暖,旋风强度将来会增加。热带气旋尽管北印度洋的热带气旋总数却有所下降,但非常严重的旋风风暴的频率增加了(每十年+1事件,2000- 2018年)。喜马拉雅地区印度库什喜马拉雅山脉在1951年至2014年之间的温暖1.3°C。到2100年,该地区的平均温度和降雪量降低。在许多地区都观察到冰川静修和降雪减少,除了在冬季降雪增加的卡拉科拉姆喜马拉雅山。
背景:温和的哥伦比亚咖啡因其高质量的咖啡杯而在全球范围内被认可。但是,收获后的做法(例如咖啡谷物发酵)出现了一些失败。这些失败有时可能导致优质产品的缺陷和不一致的咖啡农。在哥伦比亚,咖啡种植者最常使用的发酵方法之一是湿发酵,通过浸入de粉的咖啡豆在水箱中足够的时间进行进行湿法发酵,以去除粘液。目标:我们评估了水(G)/de粉咖啡(G)比率(I:0/25,II:10/25,III:20/25)和最终发酵时间(24、48和72小时)对微生物组总数。我们还确定了感兴趣的微生物是起始培养物。方法:我们使用了一个完全随机的实验设计,其中有两个因素。水(g)/de粉咖啡(g)比(i:0/25,ii:10/25,iii:20/25)和最终发酵时间(24、48和72小时)的影响,用于两种重复。在咖啡发酵(1,950 g)期间,监测pH和°brix。进行了不同微生物基(中粒,大肠菌群,乳酸细菌,乙酸酸性细菌和酵母)的总数。使用分子测序技术鉴定出各种感兴趣的微生物作为起始培养物(乳酸细菌和酵母)。结果:从不同的微型批次发酵系统中获得了21种乳酸细菌(实验室)分离株和22种酵母菌。pichia kluivery(39%)和Torulaspora delbrueckii(22%)是最丰富的酵母菌。发现的最丰富的乳酸细菌是lactiplantibacillus plantarum(46%)和Brevis左旋乳杆菌(31%)。结论所研究的因素对微生物的发展没有影响。所鉴定的细菌和酵母菌物种具有促进培养物的潜力,可用于提高质量咖啡和发酵相关的应用。
关键词:光刻热点、GaAs 蚀刻、SiN 沉积、工艺集成 摘要 光刻技术能否持续对精细几何图形进行图案化,主要挑战之一是整个晶圆和加工场内的最佳焦点存在差异。晶圆图案化侧的这些差异通常是可以理解的,可以很好地表征,并且在选择和优化焦点设置时可以进行校正。然而,晶圆背面的意外和变化的畸形会影响曝光过程中的场平衡(由于基板高度差异而导致的焦点偏移)。这会导致存在污染的地方图案分辨率较差。这些缺陷通常被称为“热点”。在本研究中,研究并表征了一种具有可重复双重像差的故障模式。结果表明,由于一种由 Si x N y 沉积和 GaAs 湿法蚀刻组成的新型集成缺陷模式,形成了意想不到的背面台面。然后,这些台面在金属互连光刻过程中产生热点,导致产量损失 1% 或更多。本研究证明了检测、表征和最小化图案化畸变对于持续改进器件、提高产量和降低化合物半导体制造成本的重要性。引言光刻是半导体行业中不可或缺的技术,是蚀刻、沉积和离子注入的前身[1-4]。保持正确且一致的聚焦和剂量控制对于确保侧壁角度和特征尺寸以满足器件功能和可靠性需求至关重要[2]。因此,先进的光刻技术对于实现器件性能和提高半导体行业的芯片产量至关重要[5]。使用浸没式光刻、双重或多重图案化、分辨率增强技术等创新方法,可以在阿贝衍射极限的几分之一处对器件特征进行图案化[1,6-8]。除了实现更密集的图案化和更小的特征尺寸外,稳健的光刻部署还面临着许多实际挑战[5,9-11]。其中一个挑战是
为了应对电动汽车行业目前和未来的增长,发展大规模、可靠和高效的锂离子电池回收行业对于确保嵌入贵重金属的循环性和确保技术的整体可持续性至关重要。正在开发的主要回收程序之一是基于湿法冶金。作为锂离子电池进行此过程之前的预处理步骤,必须将其停用以防止所含电能不受控制地释放。此停用步骤通常通过将电池深度放电至 0.0 V 来完成,而不是通常的 3.0 V 左右的下限。通常,深度放电是通过连接电阻或浸入盐溶液中来完成的。然而,由于放电电流与端电压成比例降低,这个过程可能非常慢,特别是如果要防止相当大的反弹电压。这项工作探讨了在放电速度、有效性和安全性方面更快放电程序的可行性。所提出的程序需要使用可控负载以恒定电流进行深度放电,然后立即施加外部短路。恒定电流放电期间的 C 速率会发生变化以研究其影响。短路施加于 0.0 V 或 1.0 V 的端电压。通过实验评估这两个工艺步骤的安全性。审查的主要安全风险是温度升高和随后的热失控风险,以及由于压力增加和膨胀导致电解质泄漏的风险。在实验工作中,两种类型的大尺寸方形 NMC811 电池从 0% 的 SoC 开始深度放电。实验仅限于单个电池。发现在 0% SoC 的固定电池中,深度放电区域可额外获得 4% 的额外容量。根据温度测量和文献综述,热失控风险评估为低。为了研究压力的上升,测量了所有电池的厚度,并测量了三个样品的原位压力。电解质泄漏风险评估为低。放电程序结束后一周内跟踪回弹电压和电池厚度。短路 30 分钟后,所有电池的回弹电压接近 2.0 V,但需要稍长的短路持续时间才能可靠地达到此阈值。总程序时间比其他放电程序短得多,同时仍然保持安全。
Aurubis是欧洲最大的铜生产商,研究了泡沫浮选从浸出的残留物中恢复石墨的,该残留物含有含有专利的碳材料,尚待黑色质量质量贴胶流量表产生的碳材料。已经尝试了多年黑质量(BM)的浮选,尤其是作为“原始黑色质量”的前浸水材料分离步骤,目的是减少下游处理的材料质量。然而,由于有机电解质材料的夹带和剩余的涂层,呈现NMC-CATHODE材料和残留的Cu/Al Foil颗粒疏水,通常约有10-50%的有价值金属向石墨浓缩物报告(Vanderbruggen,2022)。尝试通过旨在消除残留粘合剂和创建新鲜表面的损耗步骤(高剪切)进行改进的尝试取得了成功,但这些有价值的材料报告仍然很大,但仍有大量的材料报告(Vanderbruggenet。Vanderbruggenet。al。,2022)。其他人试图使用加热步骤消除粘合剂,500 c热解,多达17%的有价值的材料仍向随后的浮选浓度报告(Zhang,et。al。,2019年)。考虑到这一挑战,Aurubis选择在其湿度铝流量表产生的石墨残基上追回石墨恢复,该残基首先开创了锂,并提高了电池材料的高回收率,即阴极活动材料(CAM)-EP4225697 B1。分别可以在图1和表1中看到典型的粒度分布(PSD)和该残基的组成,并分别可以看到标记为批次1到3的残基。富含石墨的残基,即Aurubis的浮选饲料的p80约为20µm,碳含量为35-40%,典型电极成分(例如锂金属氧化物(LMO)LMO)LI,Ni,Ni,Co和Mn的总数为1%。高石膏含量为10-12%,是Aurubis过程中使用的湿法流膜流量表步骤的结果。此石墨残基特性(大小和组成)使其成为浮选的理想选择。实际上,在浮选饲料上进行的矿物解放分析(MLA)表明,大约70%的碳被完全释放,25%的二元二元锁定主要用石膏锁定,只有5%的三元颗粒主要与铝和铜颗粒相关。
摘要 自 2010 年 1 月 1 日起,氨氮是《环境质量法》(EQA)中《工业废水管理条例》中新增的参数之一。根据该条例,工业设施位于集水区上游还是下游,氨氮限值最高限制为 10 ppm 和 20 ppm。然而,由于一些受影响公司的担忧,对于 2010 年之前开始运营的半导体公司,氨氮限值已提高到最初限值的两倍。这一临时限制将放宽至 2020 年 1 月 1 日。氨氮是由晶圆制造行业使用氢氧化铵溶液产生的,特别是在化学机械抛光(CMP)过程中。在 CMP 中,用浆料抛光硅晶圆表面会导致碎屑沉积在晶圆上。抛光后的清洁过程称为 CMP 后步骤。本文重点介绍使用 SpeedFam IPEC (SFI) AvantGaard™ 776 抛光机工具评估 CMP 后清洁效率。CMP 后步骤分为两个阶段,即抛光和擦洗过程。过去的研究人员对 CMP 后清洁进行了研究,但这些研究都无法采用,因为与湿法清洁工艺相比,这些技术在生产规模上不经济,或者所选化学品是氨基的。这项研究的目的是分析抛光和擦洗步骤的清洁效率,并制定一种不含氨的替代溶液,而不会影响清洁效率。研究发现,在抛光步骤中,晶圆上的颗粒被有效去除,去除效率为 99%,特殊配制的酸 SilTerra 清洁溶液 (SCS) 对颗粒和金属的去除能力与氢氧化铵相当,两者都实现了高于 97% 的阳离子和阴离子去除效率。SCS 的独特配方含有过氧化氢、硫酸和添加剂。该化学品是 SilTerra 的专利,由包括通讯作者在内的四位发明人拥有。之所以选择 SCS 进行评估,是因为它含有氧化和溶解污染物的必要成分。在 CMP 后清洗过程中跳过使用化学品的尝试并不理想,因为阴离子去除效率低于 95%。关键词:氨氮、环境和 CMP 后清洗。1. 简介氨氮是衡量废品或废水中氨含量的指标。根据《环境质量法》(工业废水)2009 年法规 [1],必须对废水废水分析中的氨氮进行监测和报告。
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
