当 1,3,5-三苯甲醛和 2,5-二氨基苯磺酸通过席夫碱缩合反应发生反应时,只需将溶剂从 DMF 切换到 DMSO,即可合成两种不同形态的双功能共价有机聚合物,从而得到包含花型(F-COP DMF)和环状(C-COP DMSO)形态的共价有机聚合物(COP)。通过使用 TEM、SEM、XRD、FT-IR 和 XPS 分析技术进行表征,比较了合成 COP 的化学和形态性质。除了形态各异之外,还发现这两种聚合物材料具有相似的化学性质,都带有质子酸 - SO 3 H 和路易斯碱 - C=N 官能团。随后,对这两种 COP 进行了评估,用于通过果糖脱水合成羟甲基糠醛(HMF),以研究其形态依赖的催化活性。
在标记为 1 的部分中,分析物 2(橙色迹线)的保留时间比分析物 1(紫色迹线)更长。在标记为 2 的图表部分,两种分析物在该 %B 成分下以单个峰的形式同时流出。最后,在标记为 3 的部分中,分析物 1 的保留时间比分析物 2 更长。LSS 模型是色谱优化软件的基础,也是方法开发的强大工具。图 4 显示了使用 HALO 90 Å AQ-C18、2.7 µm 色谱柱的不规则样品混合物的示例。
摘要:以低成本实现原始高质量石墨烯和其他层状材料的可持续生产是实现 2D 材料大规模应用需要克服的瓶颈之一。液相剥离 (LPE) 与 N-甲基-2-吡咯烷酮 (NMP) 结合被认为是剥离和分散石墨烯的最有效方法。不幸的是,NMP 既不可持续,也不适合扩大生产,因为它会对环境产生不利影响。在这里,我们通过揭示绿色溶剂的剥离效率和石墨烯分散性对石墨烯产量的独立贡献,展示了绿色溶剂的真正潜力。通过实验分离这两个因素,我们表明给定溶剂的剥离效率与其分散性无关。在这里,我们表明异丙醇可以像 NMP 一样有效地剥离石墨。石墨的极性和色散能与溶剂表面张力之间的匹配比证实了我们的发现。这种剥离效率和溶剂分散性的直接证据为更深入地了解大规模可持续石墨烯制造的真正潜力铺平了道路。
在本文中,我们表明,由于蒸发效应,通过无颗粒墨水的等离子体转化制备的银 (Ag) 结构的表面形貌可由溶剂控制。我们使用了三种基于乙二醇的溶剂系列来系统地改变墨水的蒸气压。喷墨打印之后,通过暴露于低压、低温射频 (RF) 等离子体来转化薄膜。Ag 薄膜的扫描电子显微镜 (SEM) 和轮廓测定法表明,表面粗糙度和孔隙率取决于墨水溶剂的蒸气压,并且随着蒸气压的降低而增大。由于孔隙率的变化,电阻率随着溶剂蒸气压的降低而增大。为了证明金属印刷技术对粗糙多孔薄膜的效用,我们使用由三种基于乙二醇的溶剂组成的墨水制作了基于 Ag 的过氧化氢 (H 2 O 2 ) 传感器。发现这些传感器的灵敏度与表面粗糙度和孔隙率有关,而这又与溶剂的蒸汽压有关。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
由AygenSavaşAlkan提交,部分履行了中东技术大学化学工程学硕士学位的要求,由HalilKalıpçılar博士教授,Pretied and Applied Sciences研究生院,PınarCiseciences研究生院PınarCharissScience教授,PınarCasalık博士。Zeynep博士Zulfaz博士EMECEN主管,化学工程,METU检查委员会成员:LeventYılmazChemical Engineering教授,Metu Assoc。 Zeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。 METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuZeynep博士Zulfaz博士EMECEN主管,化学工程,METU检查委员会成员:LeventYılmazChemical Engineering教授,Metu Assoc。Zeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。 METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuZeynep博士ÇulfazEmecen Chemical Engineering,Metu教授BirgülTantekinErsolmaz Chemical Engineering,伊特·艾协会。METU助理Erhan Bat Chemical Engineering博士。 EmreBüküşoğlu博士,MetuMETU助理Erhan Bat Chemical Engineering博士。EmreBüküşoğlu博士,MetuEmreBüküşoğlu博士,Metu
多环芳烃 (PAH) 和二恶英类化合物(包括硫、氮和氧杂环)是广泛存在的有毒环境污染物。能够与芳香族多环化合物一起生长的多种微生物对于污染场地的生物修复和地球的碳循环至关重要。在这里,在联苯 (BP) 存在下生长的假单胞菌 B6-2 (ATCC BAA- 2545) 细胞能够同时降解 PAH 及其衍生物,即使它们以混合物的形式存在,并且能够耐受高浓度的剧毒溶剂。对菌株 B6-2 的 6.37 Mb 基因组的遗传分析揭示了负责芳香族化合物中央分解代谢系统和溶剂耐受性的基因簇共存。我们利用功能转录组学和蛋白质组学来识别与 BP 以及 BP、二苯并呋喃、二苯并噻吩和咔唑混合物的分解代谢相关的候选基因。此外,我们观察到 BP 在转录水平上的动态变化,包括芳香化合物的代谢途径、趋化性、流出泵和转运蛋白,这些可能与适应 PAH 有关。这项关于菌株 B6-2 高度多功能活性的研究表明,它
图1 Yarrowia脂溶性固体箭头中脂质代谢的概述:化学转换和运输反应,虚线箭头:多个化学转换步骤,虚线和箭头:代表N-限制后果。AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]AMP,单磷酸腺苷; CIT,柠檬酸盐; DAG,二酰基甘油; DHAP,二羟基丙酮磷酸盐; F6P,果糖6-磷酸盐; FA,脂肪酸; FBP,果糖1,6-双磷酸;烟雾,富马酸; G3P,甘油3-磷酸盐; G6P,葡萄糖6-磷酸盐; GA3P,3-磷酸甘油醛; ICIT,异核酸; Imp,肌苷一磷酸; LPA,溶物磷脂酸;马尔,苹果; mal -coa,丙二酰辅酶A; NH4,铵; OAA,草乙酸; PA,磷脂酸; pyr,丙酮酸; suc,琥珀酸;标签,三乙二醇[可以在wileyonlinelibrary.com上查看颜色图]
