氯化溶剂羽流的修复是一项艰巨的技术挑战,因为只有少数几个地点已经证实能够将地下水完全恢复到原始状态。本情况说明书总结了造成这一困难的一个关键因素 - 基质扩散。基质扩散是地下水中的污染物最初从高渗透性区域(例如砂砾)中浓度较高的区域迁移到低渗透性介质(例如黏土砂、粉砂和粘土)的过程。当高渗透性区域的地下水羽流浓度降低时,这种扩散过程可以逆向发生(“反向扩散”),并且在主要污染源被移除或控制后很长一段时间内,可能成为难以管理的次要污染源。
嘌呤和嘧啶的气相色谱分析已经完成,但是它们的挥发性和热稳定性不足以从气相色谱柱中洗脱出来。在气相色谱分析之前,需要用合适的试剂进行衍生化。使用的试剂例如双(三甲基硅基)三氟乙酰胺[12-15],五氟苯甲酰氯,五氟苯磺酰氯或七氟丁酸酐[16],N,N-叔丁基二甲基硅基三氟乙酰胺[13]和N-(叔丁基二甲基硅基)N-甲基三氟乙酰胺[14]。虽然用不同的硅基试剂进行衍生化虽然有效,但需要非水介质进行衍生化。简单且廉价的试剂可以在水相中使用,可能对嘌呤和嘧啶的气相色谱测定有价值。氯甲酸乙酯已被用作水-有机相中的衍生试剂,用于气相色谱测定胺和氨基酸 [17]。Husek 报道了氯甲酸酯作为气相色谱通用试剂的应用 [18],Simek 和 Husek 报道了烷基氯甲酸酯作为酯化试剂的应用 [19]。已经使用氯甲酸酯对多种氨基化合物进行了气相色谱分析 [20]。
,我们通过一种溶剂提取方法从天然染料源蓝莓中提取花色苷,用于在制造染料敏化太阳能电池(DSSC)中用作敏化剂。在提取花青素时,我们使用了乙腈,丁醇,乙醇和丙酮等溶剂,并检查了它们对DSSCS性能的影响。当前,可用的商业级二氧化钛(TIO 2)粉末由80 mol%金红石和20 mol%的解剖酶相组成。在准备光阳极的制备中,Tio 2粉末是通过医生刀片技术应用的。准备好的光轴浸入了提取的花青素染料中,并在整个过程中屏蔽了光线,并在不同的持续时间内暴露于不同的持续时间。为了制备电极,将大约1 nm厚的铂膜溅射到粘锡氧化物(ITO)玻璃底物上。最后,通过染料染色将涂层光射流用电极密封。为了评估制造的DSSC的性能,通过紫外线可见光谱(UV- VIS)和太阳能模拟器测量了入射光子到电子转换效率(IPCE)。结果表明,从丁醇中蓝莓提取的染料持续12小时的DSSC效率最高。在这项研究中,TERT叔丁醇是用于制造DSSC的最佳提取溶剂,从蓝莓中提取的花青素,效率为0.45%,填充系数为68.20%。需要进一步的研究才能找到一种更合适的溶剂和提取方法,而这项研究的结果证明,从天然染料来源(例如蓝莓在太阳能细胞技术中)使用染料是有希望的。
由于 SMD 溶剂模型(参见下文)只能处理单一溶剂,因此对溶剂混合物进行了处理以确定“影响溶剂”。显然,溶剂性质不是组成溶剂性质之间的简单线性插值。确定用哪种单一溶剂替代溶剂混合物有些武断,但我们使用两个原则来指导我们的推理:(1) 优先溶剂化和 (2) 活性。2 优先溶剂化意味着离子将优先被与其相互作用最强的溶剂溶剂化。因此,与极性较小的溶剂相比,极性较大的溶剂在溶剂化离子反应物方面的影响应该比基于其摩尔分数预期的要大。少数溶剂的活度系数会更高,这意味着它们将发挥比原始数字所示的更高的“有效”摩尔分数。通过结合这两个原则,我们得出了二元溶剂混合物的以下经验法则:如果极性溶剂的摩尔分数至少为 0.2,则它将用作工作流程中的单一溶剂,否则将使用极性较小的溶剂。
产品特性摘要 1. 药品名称 卡莫司汀,100 毫克,用于输液溶液的浓缩粉末和溶剂 2. 定性和定量组成 每瓶用于输液溶液的浓缩粉末含有 100 毫克卡莫司汀。重构和稀释后(见 6.6 节),1 毫升溶液含有 3.3 毫克卡莫司汀。已知作用的赋形剂 每瓶溶剂含3毫升无水乙醇(相当于2.37克)。有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 用于输液溶液的浓缩粉末和溶剂。粉末:淡黄色干燥薄片或干饼。溶剂:透明无色溶液。稀释的即用型输液溶液的 pH 值和渗透压为:pH 值:3.2 至 7.0 [当在氯化钠 9 mg/ml(0.9%)注射液或葡萄糖 50 mg/ml(5%)注射液中稀释时]。渗透压:340 至 400 mOsmol/kg[当稀释于氯化钠 9 mg/ml(0.9%)注射液或葡萄糖 50 mg/ml(5%)注射液时]。 4. 临床特点 4.1 治疗指征 卡莫司汀适用于成人治疗下列恶性肿瘤,单独治疗或与其他抗肿瘤药物和/或其他治疗措施(放射治疗、手术)联合使用: - 脑肿瘤(多形性胶质母细胞瘤、脑干胶质瘤、髓母细胞瘤、星形细胞瘤和室管膜瘤)和脑转移瘤。 - 非霍奇金淋巴瘤和霍奇金病的二线治疗。 - 胃肠道癌症。 - 与其他抗癌药物联合用于治疗恶性黑色素瘤。 - 作为恶性血液病(霍奇金病/非霍奇金淋巴瘤)自体造血干细胞移植前的调理治疗
有机-无机金属卤化物钙钛矿正在迅速接近最先进的硅太阳能电池,性能最佳的设备现在已达到 25.7% 的能量转换效率 (PCE)。[1] 尽管稳定性仍然是钙钛矿太阳能电池 (PSC) 面临的挑战,但它们的溶液加工性是一大优势。刮刀涂布、[2] 狭缝模头涂布 [3] 和喷涂 [4] 等技术与卷对卷 (R2R) 加工兼容,原则上,这应该可以实现比现有硅太阳能技术高得多的生产速度。然而,用于结晶钙钛矿活性层的漫长退火时间降低了实际制造过程中可以达到的最大理论网速。2020 年,Rolston 等人展示了所有可扩展 PSC 加工技术中最高的涂层速度,实现了 > 12 m min −1 的生产速度。 [5] 喷涂工艺与大气等离子体后处理工艺相结合,[6] 制备出的 PSC 器件和模块的 PCE 分别为 18% 和 15.5%。至关重要的是,它们是在不对钙钛矿层进行退火的情况下制造的。在这种速度下,模块成本预计可以与 Si 完全竞争。[7] 相比之下,经过 10 分钟退火的旋涂 PSC 的计算吞吐率仅为 0.017 m min −1 ;这个速率远远超出了商业化要求。此外,高温处理步骤会增加公用设施成本并降低吞吐率,从而增加了器件制造成本。[8] 高工艺温度也与许多敏感的柔性(聚合物)基板不兼容,而这些基板预计在“物联网”应用中非常重要。[9,10] 这个不断增长的市场预计将使钙钛矿的初始投资和市场进入门槛降低一个数量级。[11]
合成的六倍体线被认为是通过引入新基因(生物和非生物胁迫)在常见小麦探测过程中丢失的新基因(生物和非生物胁迫)来改善面包小麦的。在两个生长季节期间,研究了一个99个合成和普通小麦的面板,以在两个不同的水分条件(水应力和正常)下的质量和谷物相关性状和干旱耐受性。结果表明,大多数性状的变化不同,表明合成的六倍体小麦衍生的线(SHW-DL)面板包含有价值的小麦耐受性改善的基因。干旱应力降低了形态学特征和产生,但蛋白质(Pro),快速混合测试(RMT)和溶剂保留能力(SRC)特征增加。合成小麦系具有更高的谷物产量,麸质,淀粉受损,可用的苯烷,整体供水能力以及麸质强度(麸质和胶质素强度),与常见的小麦相比,它们更适合面包烘烤。结果表明,溶剂保留能力具有很强的能力来区分小麦基因型的质量。相关性分析表明,可以通过产生更受损的淀粉,更高的水吸收,硬度和较低的麸质强度以及Zeleny(Zel)来实现高屈服品种的遗传改善。将讨论使用单变量和多元方法选择上等基因型。将讨论使用单变量和多元方法选择上等基因型。
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
摘要:高通量药物发现高度依赖于可用的靶标,以加速候选药物的筛选过程。传统的化学蛋白质组学方法用于筛选药物靶标,通常需要固定/修饰药物分子以拉下相互作用的蛋白质。最近,基于能量学的蛋白质组学方法提供了一种研究药物 - 蛋白质相互作用的替代方法,即直接使用复杂的细胞裂解物,而无需对药物进行任何修饰。在本研究中,我们开发了一种新的基于能量学的蛋白质组学策略,即溶剂诱导蛋白质沉淀 (SIP) 方法,通过使用定量蛋白质组学来分析药物与其靶蛋白的相互作用。该方法适用于任何使用丙酮、乙醇和乙酸等常见化学试剂的实验室。SIP 方法能够识别细胞裂解物中众所周知的甲氨蝶呤、SNS-032 和星形孢菌素的泛激酶抑制剂的蛋白质靶标。我们进一步应用此方法发现格尔德霉素的靶标。成功鉴定了 HSP90 家族的三个已知蛋白质靶标,并首次鉴定了包括 NADH 脱氢酶亚基 NDUFV1 和 NDUFAB1 在内的几个潜在靶标,并使用蛋白质印迹法验证了 NDUFV1。此外,此方法能够评估药物 - 靶标相互作用的亲和力。这些数据共同证明我们的方法为药物靶标发现提供了一个强大的平台。