快速溶解的药物输送系统是由传统剂型制作的,用于为慢性病使用药物。快速溶解膜比传统的片剂和胶囊更受欢迎,可以掩盖药物的苦味以增强患者的依从性。迅速溶解的膜由一个超薄的条带组成,该条带放在舌头上时溶解了一分钟。溶解的口服薄膜(如呼吸条)在过去几年中一直可用,并且被消费者备受关注,用于管理维生素,疫苗和其他药物。审查还彻底解释了膜制作中使用的不同方法。当前的评论概述了与快速散落电影有关的最新专利。对用于评估这些电影的许多因素进行了简短的分析。关于长期疾病,快速溶解的膜比传统的口服形式更有效地给药药物和更快的治疗血液水平。
口服固体剂型形式是由于非侵入性,易于给药,缺乏微生物的关注等导致药物施用的普遍形式。但是,由于生物利用度问题,溶解度有限的API不适合口服。可以通过颊药物输送,微针,肠胃外给药,受控药物输送,纳米明确的药物递送,络合,液化技术51等来改善生物利用度。6-16。临床开发中约有40%的销售药物和90%的API面临溶解度的挑战。溶解度增强可以提高生物利用度,而生物利用度受到溶解度的限制,但不能受到药物吸收。可以通过几种方法来实现溶解度增强通常,某些多态性形式基于其热力学能量表现出更高的溶解度。使用这种多态性形式来增强溶解度可能会受到专利诉讼的限制17-21。溶解度增强技术是根据API和其他参数的性质选择的。无定形固体分散体(ASD)是API的溶解度增强技术,无法通过粒径减少来增强。热熔体挤出,喷雾干燥,湿球,动力醇,流体床涂料技术通常用于行业生产ASD。除了ASDS。热熔体挤出能够准备多种剂型,例如受控药物释放,膜,半固体,纳米颗粒等22-29。
摘要:某些常规药物的缺点,包括它们的生物利用度低,靶向效率差和重要的副作用,导致了药物输送系统的合理设计。尤其是,引入药物输送系统是一种潜在的方法,可以增强治疗剂的摄取,并在适当的时间和适当的集中度以所需地点的适当浓度以及有效疾病治疗的开放新策略。在这篇综述中,我们对药物输送系统提供了基本的理解,重点是使用基于环糊精,聚合物和基于表面活性剂的输送系统。这些系统非常吸引人,因为它们具有生物相容性和可生物降解的纳米材料,并具有多功能组件。我们还通过采用多种管理途径,提供了有关其设计注意事项以及它们在各种医疗应用中使用的一些细节。
摘要:在锂离子电池运行期间,(电)化学侧反应发生在细胞内,可以促进或降解性能。这些复杂的反应在固体,液体和气相中产生副产品。在这三个阶段中研究副产品可以帮助优化电池寿命。要将测得的气相副产品与溶解在液相中的物种相关联,需要等于亨利法律常数等均衡礼节。本工作实施了一个压力衰减实验,以确定乙烯(C 2 H 4)(C 2 H 4)和二氧化碳(CO 2)之间的热力学平衡浓度,它们是在Li-Ion中通常产生的两种气体,其电池在3:7 wt/wt/wt/wt/wt的电池中均为1.2 m lipf 6:碳酸氟乙二烯(15:25:57:3 wt%总成分)。实验测量的压力衰减曲线适合分析溶解模型,并外推以预测平衡时的最终压力。然后使用= k C H 2 4 2.0×10 4 kPa的亨利定律常数和k co d 2 = 1.1×10 4 kpa的用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。 这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。 ■简介用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。■简介
摘要:对绿色氢的需求引起了人们对氧气进化反应催化剂中使用的虹膜的可用性的关注。我们借助机器学习辅助计算管道识别催化剂,该计算管道接受了36,000多种混合金属氧化物的训练。管道准确地预测了来自未删除的结构的Pourbaix分解能(G PBX),平均绝对误差为每个原子77 MeV,使我们能够在酸性条件下筛选2070个新的金属氧化物。搜索将RU 0.6 Cr 0.2 Ti 0.2 O 2识别为具有提高耐用性的候选者:实验,我们发现它在100 mA cm-2时提供了267 mV的超电势,并且它在此电流密度以上并在200 h以上运行,并表现出超过200 h的速率增加25μVH-h-1。表面密度的功能理论计算表明,Ti增加了金属 - 氧的共价,这是提高稳定性的潜在途径,而CR降低了HOO *形成率确定的步骤的能量屏障,与RUO 2相比,活动增加了活性,并在100 mA CM-2下将超电位降低40 mV,同时维持稳定性。原位X射线吸收光谱和EX PTYCHOPHICONGE-扫描X射线显微镜显示反应过程中可稳态结构的演变,与RUO 2相比,RU质量溶解减慢了20倍,并抑制了晶格氧的参与度> 60%。■简介
被视为第四代固体分散体的成员,与传统的溶解度(例如Cremophore RH40和Solutol HS15)相比。从理论上讲,用作固体分散体配方的载体是一种有趣的聚合物。因为它是非离子和亲水性的,因此其溶解度不会像胃肠道系统那样改变。它表面略微活跃,可以在胃肠道中维持较差的可溶性药物过饱和的特性。有机溶液和水溶液都可以溶解溶液。由于其在挥发性有机溶剂中的溶解度,它可以用作喷涂干燥和溶剂蒸发的良好候选者来产生分散体。与另一个API一起创建稳定的解决方案,并且是一个很好的玻璃形成。
获得稳定且面容量超过 10 mA h cm − 2 的 S 正极是实现高能量密度配置的关键且不可或缺的步骤。然而,增加 S 正极的面容量往往会降低比容量和稳定性,这是由于厚电极中 S 的溶解加剧和可溶性多硫化物的扩散。本文报道了一种独立复合正极的设计,该正极利用 3D 共价结合位点和化学吸附环境来提供 S 物质的限制溶解和阻止扩散的功能。通过采用这种架构,纽扣电池表现出出色的循环稳定性和 1444.3 mA hg − 1(13 mA h cm − 2)的出色比容量,而软包电池配置表现出超过 11 mA h cm − 2 的显著面容量。这种性能与出色的柔韧性相结合,通过连续弯曲循环测试证明,即使在硫负载量为 9.00 mg cm − 2 的情况下也是如此。这项研究为开发具有更高负载能力和卓越性能的柔性 Li-S 电池奠定了基础。
摘要:纳米材料作为润滑油添加剂引起了极大的关注,因为它们具有可设计的组成和结构,合适的机械性能和可调的表面功能。但是,纳米材料和碱基油之间的兼容性不佳限制了其进一步的应用。在这项工作中,我们证明了油溶性聚(LAURYL甲基丙烯酸酯)(PLMA)刷刷的金属有机框架纳米颗粒(Nanomofs)是润滑油添加剂,可实现有效的摩擦减少和抗磨损性能。大型原始子,该聚合将其配位移植到UIO-67纳米颗粒的表面上。然后,通过表面启动的原子传递自由基聚合化在大型引起剂修饰的UIO-67上生长PLMA刷,从而极大地改善了UIO-67纳米颗粒的亲脂性特性,并显着增强了非极性溶剂溶液和碱基机油中胶体稳定性和长期分散性。通过将UIO-67@PLMA纳米颗粒添加到500 sn的基础油中,摩擦系数和磨损量减少了45.3%和75.5%,因为它们的出色机械性能和油的散发性。此外,UIO-67@PLMA添加剂的载荷能力从100 n大大增加到500 N,即使在65 Hz的高摩擦频率和120°C的高温下也证明了它们的出色摩擦学性能。我们的工作强调了油溶性聚合物刷官能化纳米型,以高效润滑添加剂。关键字:MOFS;聚合物刷;表面修饰;摩擦学特性;减少摩擦;反衣
免疫系统。她在 2021 年 7 月接种第一剂 BNT162b2 疫苗四天后出现对光过敏、眼痛、恶心、头晕和下肢无力,接种疫苗一周后将 B. serrata 的剂量增加到五粒胶囊(1000mg/d)。在以 1000mg/d 的剂量服用 B. serrata 3 周后,她因第一次无诱因全身强直阵挛性癫痫发作被送入重症监护病房 (ICU)。检查发现血清低钠血症[112mmol/L(n,135~150mmol/L)],尿钠浓度为58mmol/L,血清渗透压为234mosm/kg(n,280~300mosm/kg),尿渗透压为739mosm/kg(n,450~600mosm/kg),促肾上腺皮质激素浓度为85.9pg/mL(n,7.2~63.3pg/mL),基础皮质醇浓度正常,C反应蛋白(CRP)浓度正常,白细胞计数为11.4(n,<10/l),中性粒细胞增多,淋巴细胞减少,横纹肌溶解症[肌酸激酶(CK)最高浓度为76348U/L(n,1~145U/L)]。脑磁共振成像 (MRI) 显示脑室周围有三处未增强病变,与四年前的 MRI 相比,其数量和范围没有变化。垂体正常。恶性肿瘤筛查无用。患者被诊断为 SIADH,并接受左乙拉西坦、强制利尿和氯化钠输注治疗。经过三周的治疗和停用 B. serrata 胶囊后,她完全康复。
摘要:上下文:牙髓治疗的成功主要取决于有效的灌溉方法溶解牙髓组织,清除碎屑并清洁复杂的根管系统。次氯酸钠(Naoci)是由于其组织 - 溶解和抗菌特性而广泛使用的牙髓灌溉。目的:在次氯酸钠的不同温度下,人浆组织溶解的定量评估。材料和方法:从新鲜提取的前磨牙收集了二十四个人类纸浆组织的样品。样品分为两组:I组为正常生理盐水和II组为5.25%NAOCI。根据温度(37°C和60°C)进一步将每个组分为两个亚组,并根据组织溶解的时间间隔(1分钟,5分钟和60分钟)。结果:结果表明正常盐水未显示纸浆组织的任何溶解。相比之下,与正常盐水相比,在温度和所有时间间隔中,NAOCL的组织溶解能力明显更高。在60°C下接触5分钟至60分钟时,会看到较少的纸浆溶解。结论:根据当前研究的发现,可以得出结论,当与果肉组织接触至少5分钟,最多60分钟时,5.25%NAOCL在60°C温度下表现出最大的牙髓组织溶解。关键字:牙髓灌溉,次氯酸钠,纸浆组织溶解,温度效应,时间间隔1。引言在牙髓疗法领域获得成功的结果取决于生物力学制备准确性的三合会,化学消毒的效力以及所有根尖的有效封闭。根管系统的具有挑战性且复杂的内部解剖结构使得难以对根管系统进行彻底消毒。因此,灌溉对于消除牙本质碎屑,溶解剩余的牙髓组织和