摘要:电气接触材料越来越广泛地使用,但是现有的电动接触润滑剂仍然有很大的改进空间,例如抗衣性能和润滑寿命。由于出色的电气和润滑性能,石墨烯在润滑滑动电触点界面方面具有巨大的潜力,但缺乏相关的研究。一些研究人员研究了石墨烯在超低电流下涂有金色/锡涂层摩擦对之间的润滑性能。然而,尚未报道石墨烯在更广泛使用的电气接触材料上的润滑性能,例如铜及其合金在较大,更常用的电流或电压条件下。在本文中,我们研究了铜中石墨烯及其合金在常规参数下滑动电触点界面的润滑性能,这是通过四个方面探索的:不同的基板 - copper和brass,不同的测试方法,不同的测试方法 - 恒定伏特和恒定的电流和恒定电流,不同的正常负载和耐用性测试。实验表明,在上述测试方法和参数下,石墨烯可以显着减少黄铜和铜的摩擦和磨损,同时具有低接触电阻。我们的工作有望为电接触材料提供一种新的润滑剂,并有助于丰富石墨烯的摩擦学理论。关键字:石墨烯;滑动电触点;铜;减少摩擦;反衣低接触电阻
对于移动机器人在实际环境中运行,必须正确执行本地化,映射和导航等基本任务。这些任务强烈依赖于对环境的充分感知,在某些情况下,由于场景的本质,某些传感器的运行有限,甚至两者兼而有之,这在某些情况下可能具有挑战性。移动机器人应该能够智能地识别和克服异常情况,以避免感觉故障。我们在这项工作中提出了一种基于贝叶斯网络的新方法,该方法可以自然地代表传感器之间的复杂关系,能够整合异质的知识来源,从而扣除感觉异常的存在,并通过使用可用信息从它们中恢复。高度计算成本由一种利用我们模型结构的新算法来解决。我们的建议已在几个模拟中进行了评估,并且还在使用移动机器人的真实环境中进行了测试。获得的结果表明,与其他现有方法相比,它可以达到更好的性能和准确性,同时增强了整个感觉系统的鲁棒性。
滑动检测是要识别抓握过程中对象是否保持稳定,这可以显着增强操纵灵量。在这项研究中,我们探索了能够执行各种掌握类型的五指机器人手的滑移检测,并在整个五个手指上检测到滑移,而不是专注于单个指尖。首先,我们构建了一个在六种抓地力类型的日常生活中收集的数据集,其中包括200 k个数据点。第二,根据深重下降的原理,我们为不同的抓握类型(USDConvnet-dg)设计了一个轻巧的通用滑动检测网络,以对掌握状态进行分类(无触摸,打滑和稳定的抓紧)。通过将频率与时域特征相结合,该网络的计算时间仅为1.26 ms,平均精度在验证和测试数据集上的平均精度超过97%,表明了强大的概括功能。此外,我们在现实世界中的实时掌握力调整中验证了提出的USDConvnet-DG,表明它可以有效地提高机器人操作的稳定性和可靠性。
中上收入经济体国家代码 3: 活跃会员和候选会员年费:230.00 美元,滞纳金:40.00 美元 准会员年费:230.00 美元,滞纳金:40.00 美元 申请费:75.00 美元 阿尔巴尼亚 阿尔及利亚 美属萨摩亚 阿根廷 亚美尼亚 阿塞拜疆 白俄罗斯 伯利兹 波斯尼亚和黑塞哥维那 博茨瓦纳 巴西 保加利亚 中国人民共和国 哥伦比亚 哥斯达黎加 古巴 多米尼加 多米尼加共和国 厄瓜多尔
摘要 明确约束的断层滑动速率对于理解断层系统内的应变分配和相关的地震危险性非常重要。海原断层是青藏高原东北缘一条重要的活跃走滑断层,其晚更新世的滑动速率一直存在争议。Lasserre 等人 (1999) 的前期研究表明滑动速率为 12 ± 4 毫米/年,高于最近通过大地测量确定的相邻断层段的滑动速率。我们利用位于松山村北部的两个站点的新高分辨率机载光探测和测距数据重新分析和评估了滑动速率。基于这些数据,我们修改了现场映射的偏移约束。在马家湾站点,我们记录到 T1/T2 阶地立面顶部左旋位移分别为 130 ± 10 米,底部左旋位移为 93 ± 15 米。在玄马湾遗址,T4/T1′阶地立面的偏移量更新为 68 +3 / −10 米。结合新的地质年代学数据,我们评估 T2 的废弃年龄为 26.0 ± 4.5 ka,T1 的废弃年龄为 9,445 ± 30 年。这些数据表明,基于上部阶地和下部阶地重建,自~26 ka 以来的滑动速率在 5.0 +1.5 / −1.1 和 8.9 +0.5 / −1.3 毫米/年之间。我们的重新评估支持了藏北地区明显的滑动速率差异可能存在系统性偏差,这是由于使用下部阶地重建来解释偏移年龄造成的。
摘要 — 脑电图 (EEG) 信号的准确二元分类是开发运动想象 (MI) 脑机接口 (BCI) 系统的一项艰巨任务。本研究提出了两种滑动窗口技术来增强运动想象 (MI) 的二元分类。第一种方法计算所有滑动窗口预测序列的最长连续重复 (LCR),称为 SW-LCR。第二种方法计算所有滑动窗口预测序列的模式,称为 SW-Mode。公共空间模式 (CSP) 用于提取特征,线性判别分析 (LDA) 用于对每个时间窗口进行分类。SW-LCR 和 SW-Mode 都应用于公开可用的 BCI 竞赛 IV-2a 健康个体数据集和中风患者数据集。与现有的最先进技术相比,SW-LCR 在健康个体的情况下表现更好,SW-Mode 在左手与右手 MI 的中风患者数据集上表现更好,标准差更低。对于这两个数据集,分类准确率 (CA) 约为 80%,kappa (κ) 为 0.6。结果表明,使用 SW-LCR 和 SW-Mode 的基于滑动窗口的 MI 预测对于试验内激活时间的试验间和会话间不一致具有很强的鲁棒性,因此可以在神经康复 BCI 环境中实现可靠的性能。
摘要:本文对锂离子电池中的浮点电流分析进行了全面的探索,这是一种有希望的新测试方法来评估日历老化。浮点电流定义为瞬态部分后的稳态trick流动电流。在文献中,报告了与容量损失的相关性。假设浮点电流会补偿随着时间的推移的电压衰减,并且与日历老化有关,则必须考虑电压滑动的效果。DU/DQ分析仅表明活跃锂的损失。因此,我们研究了固体电解质相(SEI)的生长,作为解释浮点电流起源的一般老化机制。我们的结果表明,电压滑理论在低至中间测试电压范围内保持真实。然而,该理论的解释能力开始在更高的电压范围内减少,这表明存在影响浮动电流的其他但未知的因素。通过电解质分解对阴极的穿梭反应或晶石是高压下最有前途的替代老化机制。本文提出了一个独特的电压滑模型,以检查老化机制,浮点电流测试和检查测试之间的相关性。为了更好地理解,提出了测试策略来验证/伪造SEI以外的老化机制。
摘要:氧气进化反应(OER)为许多电催化功率对X过程提供了质子,例如从水或CO 2中产生绿色氢或甲醇。含氧氧化物(IOHS)是该反应的出色催化剂,因为它们在酸性电解质中的活性和稳定性之间取得了独特的平衡。在IOHS中,此平衡随原子结构而变化。 虽然无定形IOH的表现最佳,但它们是最不稳定的。 相反,它们的结晶对应物是正确的。 这些规则用于减少稀缺的IOH催化剂的负载并保留性能。 但是,尚不完全了解活动和稳定性在原子水平上如何相关,从而阻碍了理性设计。 在此,我们提供了简单的设计规则(图12),这些规则源自本研究中的文献和各种IOH。 我们选择了晶体IROOH纳米片作为我们的铅材料,因为它们提供了出色的催化剂利用和可预测的结构。 我们发现,iRooh在超过无定形IOH的活性的同时表示晶体IOH的化学稳定性。 其致密的锥体三价氧(μ3Δ-O)的密集键合网络提供了结构完整性,同时允许可逆还原到电子间隙状态,从而减少了还原电位的破坏性效果。 反应性起源于具有自由基特征的协调不饱和边缘位点,即μ1-o oxyls。 我们希望这些规则将激发未来催化剂的原子设计策略。 ■简介在IOHS中,此平衡随原子结构而变化。虽然无定形IOH的表现最佳,但它们是最不稳定的。相反,它们的结晶对应物是正确的。这些规则用于减少稀缺的IOH催化剂的负载并保留性能。但是,尚不完全了解活动和稳定性在原子水平上如何相关,从而阻碍了理性设计。在此,我们提供了简单的设计规则(图12),这些规则源自本研究中的文献和各种IOH。我们选择了晶体IROOH纳米片作为我们的铅材料,因为它们提供了出色的催化剂利用和可预测的结构。我们发现,iRooh在超过无定形IOH的活性的同时表示晶体IOH的化学稳定性。其致密的锥体三价氧(μ3Δ-O)的密集键合网络提供了结构完整性,同时允许可逆还原到电子间隙状态,从而减少了还原电位的破坏性效果。反应性起源于具有自由基特征的协调不饱和边缘位点,即μ1-o oxyls。我们希望这些规则将激发未来催化剂的原子设计策略。■简介通过与其他IOH和文献进行比较,我们概括了我们的发现并综合了一组简单的规则,这些规则可以预测原子模型中IOH的稳定性和反应性。
摘要:必须控制滑移迁移,以保持柔性包装的性能和质量。基于无机的抗块材料可用于控制滑动迁移。本文报道了抗块类型对抑制滑移迁移对聚乙烯单层膜的影响。用三种不同的抗块添加剂(即滑石,天然二氧化硅和合成二氧化硅)以及灰泥酰胺制成了一系列制剂。光学性质(雾兹)和摩擦特性(COF)以评估膜特性,因为在存在抗阻滞添加剂的情况下滑动迁移的发展。通过SEM-EDX进行了抗块材料的表征,通过GC-MS检查滑动添加剂类型,而FTIR分析了表面上的滑动含量。结果表明,在七天后,合成二氧化硅抗块的COF可达0.095,薄膜表面上有痕量丘疹含量为394 ppm,这是其他类型的抗块中最低的抗块。合成二氧化硅抗块上较小的粒径和较高的二氧化硅含量导致更好的摩擦特性,这是限制陶瓷酰胺迁移到膜表面的良好障碍。
滑动是一种运动系统,其特征是独立驾驶地面车辆的平行胎面。转弯需要向每个胎面命令不同的旋转速度,这激发了内部胎面在转弯中刹车的外部胎面,相反,该胎面被外部拖动。因此,外胎面滑动,即,它的进展要小于其旋转速度给出的位移,并且内部滑动,即它的旋转速度比预期的要多。当车辆在现场转动时,理想情况下,胎面速度相反,两个胎面上都会滑动。仅当两个胎面都具有相同的旋转速度时,不会发生滑动或打滑(在直线运动期间)。可以使用轨道或几个机械链接的轮子建造滑动车辆的胎面。主要区别在于它们与地面的接触斑,轨道比车轮要大得多,从而导致摩擦更高,并且在不规则的地形上具有更好的牵引力[1]。每侧的车轮数通常在两到四个之间变化,是胎面的行为,距离更接近轨道。由于它的机械简单性和高可操作性,载人[2]和无人驾驶[3]地面车辆通常都采用了滑动运动。滑动移动机器人的现场应用包括检查[4],采矿[5],农业[6] [7],搜救[8]和林业[9]等。尽管如此,这种机制意味着高功率要求[10] [11],并使动态建模更加复杂[12] [13]。此外,在倾斜的地形上运行[14] [15],