复制 本出版物可以全部或部分形式制作,用于任何形式的教育或非盈利目的,无需获得版权所有者的许可,只要在所有类型的出版物中注明并引用(如下所述)来源,包括研究文章、期刊论文、会议论文集、书籍、书籍章节、科学报告、学位论文等。 NRSC 希望收到使用本出版物作为来源的任何出版物的副本。不得将本出版物用于转售或任何其他商业目的 本出版物中的观点和解释属于作者。它们不属于 NRSC,并不暗示对任何国家、领土、城市或其当局地区的法律地位或对其边界或边界的划定或任何产品的认可发表任何意见。本出版物中提出的行政边界仅用于科学研究,不用于法定目的。
地质灾害存在灾变孕育过程和致灾模式复杂、早期识别和监测预警难度大、风险防范技术支撑不足等问题,因此国家防灾减灾战略对地质灾害监测技术装备的需求很大。三维空间监测关键技术可以集成降雨、土壤含水量、倾斜、孔隙水压力、应力等滑坡因素监测技术,实现专业监测技术体系的一体化。在该技术体系中,将各监测点的多种信息处理转化为时间序列问题,利用数据融合技术,综合成一组综合信息,由点到面对滑坡进行直接监测预报[1]。滑坡监测的主要任务是结合变形监测与诱发因素监测,掌握滑坡变形破坏的特征信息,分析其动态规律,实现监测在空间、时间和尺度上的信度与效度[2]。
本研究的目的是提出一种地形引导方法来解释由差分干涉合成孔径雷达 (D-InSAR) 创建的 L 波段 ALOS/PALSAR 干涉图。干涉图用于估计两个快速大型滑坡 (Poche, La Valette;法国东南部) 的变形模式。针对不同的运动类型 (旋转、平移和复杂滑动) 和两个范围的表面位移速率解释了包裹和展开的相位值。检测到两个滑坡的运动子单元,并确定了受扩大或退化影响的区域。InSAR 得出的位移率与地面测量值以及来自 C 波段和 X 波段卫星 SAR 传感器的位移远程估计值一致。结果证明了 L 波段 ALOS/PALSAR 图像在监测土壤表面状态发生重大变化并被植被覆盖的活跃滑坡方面的潜力。© 2014 Elsevier B.V. 保留所有权利。
Zbigniew PERSKI 1) *、Andrzej BORKOWSKI 2) 、Tomasz WOJCIECHOWSKI 3) 和 Antoni WÓJCIK 1) 1) 波兰地质研究所 - 国家研究所。喀尔巴阡分校,Skrzatow 1, 31-560 克拉科夫,2)弗罗茨瓦夫环境与生命科学大学,大地测量与地理信息学研究所,Grunwaldzka 53, 50-357 弗罗茨瓦夫,波兰 3)西里西亚大学,系基础地质学,Bedzinska 60, 41-200 Sosnowiec,波兰 * 通讯作者的电子邮件:zper@pgi.gov.pl ( 2011 年 1 月收到,2011 年 8 月接受) 摘要 本文介绍了对ERS-1/2 卫星获取的波兰南部罗兹诺湖同一区域的两个档案 SAR 数据集。两个数据集涵盖了相同的 8 年时期(1992 年 - 2000 年),并且通过相邻卫星轨道之间的 50% 重叠来指代同一区域。的主要目的是该分析旨在得出使用 PSI(持久散射体干涉测量法)计算的变形速度重叠数据。呈现的 PSI 结果是指位于活跃滑坡上的 PS(持久散射体),因此代表滑坡运动。 div>在波兰喀尔巴阡山脉,由于城市化稀疏、植被和地势起伏不平,获得的 PS 密度通常不是很高,而且通常很难解释。应用两个重叠数据集,其中两个它们观察到相同的现象,可以通过识别共同的 PS 点来交叉验证数据。对于从不同轨道获取的两个数据集,通常许多 PS 并不常见并且发生在不同的位置。这种情况可以通过两次采集的入射角差异来解释。在两条轨道的情况下,不同的地形物体可能充当 PS。通过连接来自这些相邻轨道的 PS 点集,可以显著增加 PS 的密度。为了对 Roznow 湖进行 PSI 分析,使用了从 179 和 408 条轨道获取的数据并从 PSI 处理中获得了数百个 PS。对于这两条轨道,都获得了相似的变形速度,范围在 +/- 6 毫米/年内。PS 点活跃的山体滑坡通常与建筑物(墙壁、屋顶)和道路有关,通常受高风险影响。关键词:山体滑坡、持续散射干涉测量、SAR 干涉测量、激光雷达、喀尔巴阡山脉
7.3.5 结果................................................................................................................................197 7.3.5.1 滑坡灾害....................................................................................................................197 7.3.5.2 泥流灾害........................................................................................................................199 7.3.5.3 风险图........................................................................................................................199
表1:对于最多三个阶段中的任何一个中的任何一个,x方向通量和源术语控制流动动力学。y方向上的术语以类似的方式提出。u x和u y = x和y方向的深度平均速度; UU VM和UV VM =虚拟质量贡献(Pudasaini and Mergili,2019年); dt =分散术语(Pudasaini,2023); g x = x方向重力的有效下坡分量; F D =变形系数(Pudasaini和Mergili,2024a); k x = x方向地球压力系数; G Z +和G Z- =重力的有效斜率正常成分,包括不同的浮力效应(Pudasaini和110 Mergili,2019年); G Z * =有效的重力斜率正常成分,包括浮力和曲率效应; C drag =阻力系数(Pudasaini and Mergili,2019年); δ=基底摩擦角; c =内聚力; E V =通过剪切系数通过剪切系数损失(Pudasaini和Mergili,2024b); φ=内部摩擦角; f ml =碎片数(Pudasaini等,2024); ζ=湍流摩擦数; n =曼宁号码;和C AD =环境阻力系数。绿色表示输入参数,蓝色表示派生的参数。115
表 1:敏感性测绘组成部分 ...................................................................................................................................... 18 表 2:滑坡测绘组成部分和覆盖范围 .............................................................................................................................. 23 表 3:成对评估摘录 ...................................................................................................................................................... 25 表 4:成对评估比较 ...................................................................................................................................................... 25 表 5:灾害分级 ............................................................................................................................................................. 29 表 6:自然灾害使用类型 ............................................................................................................................................. 34 表 7:自然灾害开发类型 ............................................................................................................................................. 35 表 8:按地方政府区和县划分的滑坡灾害规划分级面积(公顷)................................................................................ 74 表 9:面积小于 2000 平方米的空置地块................................................................................................ 77
本研究的目的是提出一种以地形学为指导的方法来解释由差分干涉合成孔径雷达 (D-InSAR) 创建的 L 波段 ALOS/PALSAR 干涉图。干涉图用于估计两个快速大型滑坡(法国东南部的 Poche、La Valette)的变形模式。包裹和展开的相位值用于解释不同的运动类型(旋转、平移和复杂滑动)和两个范围的表面位移率。检测到两个滑坡的运动子单元,并确定受扩大或退化影响的区域。InSAR 得出的位移率与地面测量值以及 C 波段和 X 波段卫星 SAR 传感器的位移远程估计值一致。结果证明了 L 波段 ALOS/PALSAR 图像在监测土壤表面状态发生重大变化并被植被覆盖的活跃滑坡方面的潜力。 © 2014 Elsevier BV 保留所有权利。
对保证的免责声明没有明示或暗示对本文包含的信息做出任何形式的保证,包括但不限于适销性的保证,对特定目的的适用保证或内容,完整性,准确性,可靠性,有用性或使用的保证,或者使用这些保证不会侵犯特权权利。出于您自己的风险使用此处提供的信息旨在用作社区规划中的一般筛查工具,或者以建立对地质信息的认识和理解,并且既不旨在构成建议,也不是用来替代许可专业人员的特定网站建议。您自行使用此信息,并且不应根据信息行事(或避免行动),而无需独立验证信息,并且毕前及其适当地获得有关您的特定事实和情况的专业建议。对责任用户的限制同意,华盛顿州,华盛顿自然资源部或其官员,代理人,代表或雇员对任何损害赔偿的任何损害均不承担任何责任。在此限制下,对任何损害赔偿不承担任何责任,包括但不限于合同或侵权损害或侵权赔偿的任何损害或侵权赔偿的任何损害,结果,后果,惩罚性,直接,间接,间接或特殊损害,例如人身伤害,财产损失,利润损失或任何其他损失或任何其他损失或任何损失。此外,本文所表达的作者的观点和观点不一定陈述或反映华盛顿州或其任何代理机构的观点和观点。本文中没有认可参考任何特定的商业产品,商标,商标,制造商或其他方式,并不构成或暗示其认可,建议或偏爱。华盛顿州自然资源部希拉里·弗朗兹(Hilary S.