由于环境条件多变,光伏 (PV) 系统参数始终是非线性的。在多种不确定性、干扰和时变随机条件的发生下,最大功率点跟踪 (MPPT) 很困难。因此,本研究提出了基于被动性的分数阶滑模控制器 (PBSMC),以检查和开发 PV 功率和直流电压误差跟踪的存储功能。提出了一种独特的分数阶滑模控制 (FOSMC) 框架的滑动面,并通过实施 Lyapunov 稳定性方法证明了其稳定性和有限时间收敛性。还在被动系统中添加了额外的滑模控制 (SMC) 输入,通过消除快速不确定性和干扰来提高控制器性能。因此,PBSMC 以及在不同操作条件下的全局一致控制效率是通过增强的系统阻尼和相当大的鲁棒性来实现的。所提技术的新颖之处在于基于黎曼刘维尔 (RL) 分数阶微积分的 FOSMC 框架的独特滑动曲面。结果表明,与分数阶比例积分微分 (FOPID) 控制器相比,所提控制技术可在可变辐照度条件下将 PV 输出功率的跟踪误差降低 81%。与基于被动性的控制 (PBC) 相比,该误差降低 39%,与基于被动性的 FOPID (EPBFOPID) 相比,该误差降低 28%。所提技术可使电网侧电压和电流的总谐波失真最小。在不同太阳辐照度下,PBSMC 中 PV 输出功率的跟踪时间为 0.025 秒,但 FOPID、PBC 和 EPBFOPID 未能完全收敛。同样,直流链路电压在 0.05 秒内跟踪了参考电压,但其余方法要么无法收敛,要么在相当长的时间后才收敛。在太阳辐射和温度变化期间,使用 PBSMC,光伏输出功率在 0.018 秒内收敛,但其余方法未能收敛或完全跟踪,与其他方法相比,由于 PBSMC,直流链路电压的跟踪误差最小。此外,光伏输出功率在 0.1 秒内收敛到参考功率
摘要 本文提出了一个综合框架,通过集成二阶滑模控制 (2-SMC) 和基于机器学习和人工智能的先进异常检测和预测系统来提高四旋翼无人机的安全性和可靠性。本文提出了一种新的滑动流形方法,分为两个子系统,用于精确的位置和姿态跟踪,解决了设计四旋翼控制器的挑战。本文还使用 Hurwitz 稳定性分析对滑动流形的非线性系数进行了详细分析。它通过大量的模拟结果证明了所提方法的有效性。为了进一步评估四旋翼的安全性和可靠性,将异常检测和预测系统与位置和姿态跟踪控制相结合。该系统利用机器学习和人工智能技术实时识别和预测异常行为或故障,使四旋翼能够快速有效地应对危急情况。所提出的框架为设计四旋翼无人机的稳健和安全控制器提供了一种有前途的方法。它展示了先进的机器学习和人工智能技术在提高自主系统安全性和可靠性方面的潜力。
EngagedScholarship@CSU 为您提供免费开放的本论文。EngagedScholarship@CSU 的授权管理员已接受本论文并将其收录到 ETD 档案中。如需了解更多信息,请联系 library.es@csuohio.edu 。
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
摘要:本文提出了一种增量反步滑模 (IBS) 控制器,用于无尾飞机的轨迹控制,该飞机具有未知的干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种稳定性增强器 (SE),它限制了虚拟控制输入的速率和幅度。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,第一层 SE 将被激活以修改轨迹跟踪误差;当虚拟控制输入超过边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。借助 SE,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数的自适应估计器,与 IBS 一起,使控制器表现出出色的鲁棒性。最后,给出了两个仿真结果。第一次仿真表明系统对外界干扰和模型不确定性不敏感,第二次仿真证明了SE的有效性。
摘要:本文旨在从本质上调节电力系统扰动条件下直流微电网的直流母线电压。因此,提出了一种新型最优模型预测超扭转分数阶滑模控制 (OMP-STFOSMC),用于三相交流-直流转换器,可有效提高微电网的稳定性和动态性能。传统的模型预测控制器严重影响动态稳定性,导致过冲、下冲和稳定时间过长。可以用滑模控制器代替这些传统控制器,以适当解决此问题。传统滑模控制器的主要缺点是控制信号中的高频抖动,这会影响系统,并且使其在实际应用中不令人满意且不可行。所提出的 OMP-STFOSMC 可以有效提高控制跟踪性能并减少高频抖动问题。随机分形搜索 (SFS) 算法因其高探索性和良好的局部最优规避能力而被用于最佳地调整控制器参数。考虑不同的运行条件来评估所提出的控制器的动态和无抖动性能。通过比较分析的仿真结果,可以观察到所提出的OMP-STFOSMC具有更好的动态稳定性特性。关键词:直流微电网,跟踪性能,抖动问题,OMP-STFOSMC,SFS算法
本文提出了一种基于滑模观测器的混合储能系统(HESS)动态等效荷电状态(ESOC)估计方法。由于HESS中耦合了不同类型的储能元件和电力电子电路,传统的SOC估计方法不能反映HESS的实时运行特性。针对这一问题,本文基于HESS模型构建了滑模观测器,通过采集相应的电压和电流信号,可以实时准确观测储能元件的内部参数。进一步结合实时电荷平衡的思想定义动态ESOC,以反映HESS的准确可用容量。最后,给出基于MATLAB / Simulink模型的仿真结果,验证了所提出的动态ESOC的可行性。
图 3.29:升降舵偏转信号 ...................................................................................................... 37 图 3.30:方向舵偏转信号 ...................................................................................................... 37 图 3.31:沿 X 方向的速度 B(“u”) ............................................................................................. 38 图 3.32:沿 Y 方向的速度 B(“v”) ............................................................................................. 38 图 3.33:沿 Z 方向的速度 B(“w”) ............................................................................................. 38 图 3.34:滚转速率(“p”) ............................................................................................................. 39 图 3.35:俯仰速率(“q”) ............................................................................................................. 39 图 3.36:偏航速率(“r”) ............................................................................................................. 39 图 3.37:滚转角度(“Phi”) ............................................................................................................. 40 图 3.38:俯仰角度(“Theta”) ........................................................................................... 40 图 3.39:偏航角(“Psi”)................................................................................................... 40 图 3.40:迎角
摘要:针对共轴旋翼飞行器自主飞行过程中模型参数的不确定性、外界扰动及传感器噪声对飞行的影响,研究位置姿态反馈控制系统的鲁棒反步滑模控制算法,以解决未知外界干扰情况下飞行器的轨迹跟踪问题。本文针对未知飞行,建立了基于受扰共轴旋翼飞行器的非线性动力学模型。然后,设计了非线性鲁棒反步滑模控制器,分为共轴旋翼飞行器的姿态控制器和位置控制器两个子控制器。在控制器中引入虚拟控制,构造Lyapunov函数,保证各子系统的稳定性。通过数值仿真验证了所提控制器的有效性。最后通过飞行试验验证了反步滑模控制算法的有效性。
摘要 对于含可再生能源的微电网而言,频率稳定性至关重要,然而源荷不确定性会导致频率的恶化和储能设备的增加。为此,提出了一种基于滑模方法的含混合储能系统(HESS)微电网频率协调控制策略。首先,设计详细频率调节方案,将频率偏差和区域控制误差分成不同分量作为不同电源的功率参考值。其次,通过设计模糊控制器设定由超级电容和电池组成的HESS的功率阈值,以降低HESS的备用功率,避免不合理的功率输出。第三,建立含HESS的负载频率控制模型,并利用详细频率调节方案设计滑模控制。最后,通过不同算例的对比,验证了所提频率协调控制策略的有效性。