本文提出了一种基于滑模观测器的混合储能系统(HESS)动态等效荷电状态(ESOC)估计方法。由于HESS中耦合了不同类型的储能元件和电力电子电路,传统的SOC估计方法不能反映HESS的实时运行特性。针对这一问题,本文基于HESS模型构建了滑模观测器,通过采集相应的电压和电流信号,可以实时准确观测储能元件的内部参数。进一步结合实时电荷平衡的思想定义动态ESOC,以反映HESS的准确可用容量。最后,给出基于MATLAB / Simulink模型的仿真结果,验证了所提出的动态ESOC的可行性。
摘要:本文提出了一种增量反步滑模 (IBS) 控制器,用于无尾飞机的轨迹控制,该飞机具有未知的干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种稳定性增强器 (SE),它限制了虚拟控制输入的速率和幅度。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,第一层 SE 将被激活以修改轨迹跟踪误差;当虚拟控制输入超过边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。借助 SE,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数的自适应估计器,与 IBS 一起,使控制器表现出出色的鲁棒性。最后,给出了两个仿真结果。第一次仿真表明系统对外界干扰和模型不确定性不敏感,第二次仿真证明了SE的有效性。
首先,我必须感谢受邀为“滑流”做出贡献。作为一名非飞行员,我很荣幸有机会与我们海军舰队航空兵的(前任和现任)成员进行交流。距离“澳大利亚皇家海军”(RAN)这个新国家被授予英联邦海军部队已有近 100 年。在过去的这些年里,无论是在和平时期还是在战争时期,RAN 都多次应邀前往我们的国家。每次我们都做好准备,为我们有充分理由自豪地享受的持续自由和民主做出重大贡献。2014 年,在我们参加第一次冲突一百周年之际,我相信 RAN 将处于能力的分水岭时刻。五年后,海军将投入使用两级战舰,为澳大利亚国防军提供显著增强甚至全新的能力。从 2014 年开始,我相信澳大利亚皇家海军将在几十年来首次实现真正平衡的兵力结构和先进的作战能力——可以说是自我们成立以来首次。海军将在 2014 年迎来三艘霍巴特级 7,000 吨级宙斯盾防空驱逐舰中的第一艘。此外,27,000 吨级两栖舰(直升机登陆舰 - LHD)HMAS CANBERRA 将于同年交付。每个级别的战舰都将为澳大利亚国防军提供一套能力,这将大大增强我们在联合任务组环境中有效作战的能力。在霍巴特级中,我们将能够大大拓宽我们在区域空战中的视野,并引入令人印象深刻的指挥和控制 (C2) 能力以及先进的水面、水下和打击系统。堪培拉级将标志着澳大利亚持续两栖或远征作战能力的出现。引入海上联合 C2 能力、用于船岸“连接器”的可淹没对接以及用于多飞机作战的令人印象深刻的航空设施将带来挑战和显著优势。凭借升级后的 COLLINS 级潜艇、新型多船员 ARMIDALE 级巡逻艇、HUON 级扫雷艇和扫雷潜水队、补给舰、大大增强的 ANZAC 级护卫舰、不断发展的海洋科学部队,当然还有我们的舰队航空兵,澳大利亚皇家海军将同时拥有超越以往任何时候的广度和深度。澳大利亚将拥有新一代海军 (NGN)。五年内有很多事情要做,我期待您的支持和贡献,以充分实现我们的 NGN。我们有很多值得兴奋的事情。问候 S. R. GILMORE 海军少将,RAN
传统发电方式正经历重大变革,而可再生能源微电网在能源结构转型中发挥着关键作用。本文研究了基于积分终端和快速积分终端滑模控制的集中式非线性控制器设计,用于以可再生分布式发电机作为主电源、燃料电池 (FC) 作为次电源、电池-超级电容器作为混合储能系统 (HESS) 的混合交直流微电网。首先,建立混合交直流微电网的详细数学模型。然后,设计控制器,主要目标是确保孤岛和并网模式下直流和交流母线电压恒定。在并网模式下,控制器能够为公用电网提供频率支持。之后,利用 Lyapunov 稳定性标准证明了混合交直流微电网的渐近稳定性。然后,通过在 MATLAB/Simulink 上进行仿真来测试所提出的控制方法的性能和鲁棒性,并将结果与滑模控制器和 Lyapunov 重新设计进行比较。最后,进行实时硬件在环测试以验证所提出框架的有效性。
摘要 本文提出了一个综合框架,通过集成二阶滑模控制 (2-SMC) 和基于机器学习和人工智能的先进异常检测和预测系统来提高四旋翼无人机的安全性和可靠性。本文提出了一种新的滑动流形方法,分为两个子系统,用于精确的位置和姿态跟踪,解决了设计四旋翼控制器的挑战。本文还使用 Hurwitz 稳定性分析对滑动流形的非线性系数进行了详细分析。它通过大量的模拟结果证明了所提方法的有效性。为了进一步评估四旋翼的安全性和可靠性,将异常检测和预测系统与位置和姿态跟踪控制相结合。该系统利用机器学习和人工智能技术实时识别和预测异常行为或故障,使四旋翼能够快速有效地应对危急情况。所提出的框架为设计四旋翼无人机的稳健和安全控制器提供了一种有前途的方法。它展示了先进的机器学习和人工智能技术在提高自主系统安全性和可靠性方面的潜力。
本文基于多输入多输出扩展状态观测器 (MIMO-ESO),为四旋翼飞行器开发了一种新型 U 模型增强型双滑模控制器 (UDSMC)。UDSMC 采用 Lyapunov 合成和 Hurwitz 稳定性设计,不仅可以消除复杂的动力学和非线性,还可以稳定底层四旋翼飞行器的不确定性和外部干扰。MIMO-ESO 旨在估计不可测量的速度,从而可以减少传感器测量误差在实践中的影响。该控制设计成功解决了与四旋翼飞行器速度测量干扰和不确定的空气动力学相关的困难。进行了严格的理论分析,以确定所提出的控制系统是否能够实现稳定的轨迹跟踪性能,并进行了实时比较实验研究,以验证所提出的控制系统比内置 PID 控制系统更有效。© 2022 作者。由 Elsevier Ltd 代表富兰克林研究所出版。这是一篇根据 CC BY 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )
电荷转移的确切机制仍在研究中。旁边是电子传递,10、14、29该现象通常归因于离子电荷。2,32 - 36在水或高含量液体中,大多数固体表面都会充电。这些表面电荷自发形成,例如,通过溶液中的离子吸附,通过表面基团的质子化或去质子化或通过离子的优先溶解,从而形成静电双层(EDL)。37,38 Sosa等。 表明接触电气与液体的Zeta电位,pH和盐串联相关。 39因此,先前的模型基于这样的假设:从接触线移动时,来自EDL的某些电荷被留在实心表面上。 13最近,从理论上描述了回收接触线及其参数依赖性的这种电荷传输机制。 4037,38 Sosa等。表明接触电气与液体的Zeta电位,pH和盐串联相关。39因此,先前的模型基于这样的假设:从接触线移动时,来自EDL的某些电荷被留在实心表面上。13最近,从理论上描述了回收接触线及其参数依赖性的这种电荷传输机制。40
2024年11月8日 — 主题、规格等 单位 数量 金额 备注 出售废油(润滑油、燃料油等) 000,000 低于保证金 总计 000,000 接受您的通知、公告、招标和合同指南、合同条款等......
社交媒体研究的综合数据似乎是具有有趣潜力的特征,但由于缺乏对现实世界数据的参考,它仍然受到损害。Chatgpt生成的合成数据在验证包含LLM建议的主题标签的帖子的存在时,表明这种相关性极为不一致,并且CHAT-GPT提供的绝大多数Instagram帖子要么不解决或不包含任何相关的主题标签。合成数据在这个意义上并不代表现实世界数据,该数据强调了Chatgpt在建议相关的主题标签时似乎如何关注语义相似性,并且对平台上共享内容共享内容的共享实践没有掌握,可能是它们的内容或面向市场(定位)。然而,合成数据仍然可以证明分析有用性。在比较自动和手动群集标签时(在平台上使用这些主题标签对社区和帖子进行了个性化之后,或者由Chatgpt产生它们),实际上,聊天机器人和研究人员产生的标签中具有显着的亲和力(与手动编码的簇相比,由6个出现了6个)。1。简介