- 数字位“对于任何人来说,这一定很容易地识别签名是真实的,但除合法签名者以外的任何人都不可能生产它” - 密码学的新方向(1976)
ERP系统从僵化的本地解决方案到敏捷,云本地平台的演变彻底改变了组织管理。今天,ERP系统涵盖了各种行业和功能,从财务管理到供应链优化。本文综合了突出的ERP系统的功能 - SAP,Oracle,MRI,ISCALA,PEOPLESOFT,JDE,SALESFORCE和QUICKBOOKS - 高音介绍了他们在财务运营中的角色以及对AI-Driven Trunchation转型的准备。此外,本文探讨了ERP系统在Fintech和Biopharma等新兴行业中的应用,其中AI和ERP的整合对于竞争优势而言越来越重要。AI的最新进展,例如开发更复杂的机器学习算法和自然语言处理能力,正在进一步增强ERP系统的潜力,以推动业务创新和效率。
在过去的二十年中,实体瘤的抗肿瘤策略发生了显着转化。在最初的10年中,焦点从传统方法(例如DNA复制抑制和细胞分化靶向疗法)(例如受体酪氨酸激酶(RTK)) - 靶向疗法(1-3)。随后的十年见证了免疫疗法的出现,引入了血液学和实体瘤的新范式(4)。在各种免疫疗法中,免疫检查点抑制剂(ICIS)的出现,例如抗 - 程序性细胞死亡1(PD-1)/程序性细胞死亡配体1(PD-L1)和抗 - 细胞毒性T-淋巴细胞 - 相关的蛋白质4(CTLA-4)的抗乳腺癌和癌症的癌症,包括癌症和癌症,包括癌症,包括癌症,包括乳腺癌,包括乳腺癌的癌症,包括癌症癌症,包括梅洛癌,包括梅洛(Ren)癌症。癌(5-9)。然而,由于免疫抑制性肿瘤微环境(TME)和物理屏障(10),实体瘤通常会对免疫疗法构成挑战。为了重塑免疫抑制微环境,研究人员正在开发更多的免疫治疗策略(11,12)。此外,正在进行许多临床试验,以探索涉及ICIS的组合(7,9)。尽管ICI取得了显着的成功,但他们的好处仅限于一部分患者。胶质母细胞瘤(GBM)是最致命的神经胶质瘤类型,它表现出“冷”免疫微环境(13)。为了获得更好的治疗作用,正在开发新的抗癌疗法,例如ICIS,疫苗疗法和适应性细胞转移疗法(ACT),并已被证明对某些患者有益(14-17)。越来越多的研究人员致力于克服GBM中的免疫抑制微环境。BiblioMetrics试图在特定时期(18-20)理解科学领域的知识结构。在生物医学领域,已经进行了许多文献计量分析,以了解对特定研究领域的见解(21 - 23)。尽管如此,尚未进行全球关于神经胶质瘤免疫疗法的文献分析。这项研究的目的是概述整个科学领域,并通过系统地评估过去20年来系统地评估胶质瘤免疫疗法最有利的100篇论文。
摘要最近的经济转型迫使公司重新定义其价值主张,以补充服务(所谓的产品服务系统(PSS))增加传统产品。其中,采用行业4.0技术非常普遍。但是,尚未详细调查公司4.0为其行业客户提供新价值的指示。基于焦点小组,本文通过识别将塑造PSS和行业4.0合并的未来情况的主要轨迹来促进这一理由。此外,未来的研究方向(a)PSS价值链转换为PSS生态系统,(b)单个公司内部的转型朝向PSS提供商,以及(c)确定传统PSS业务模型的数字转换。
世界人口的16%以上依赖冰川和融雪作为水的来源(Barnett等,2005)。在热带和亚热带干旱和半干旱地区,人类使用的淡水中有80%来自山脉(Messerli,2001; Vuille等,2008)。Cauvy-Fraunié和Dangles(2019)将冰川覆盖率和熔融率(除其他因素)确定为可以调节分类单元敏感性的关键变量。温度和沉淀(PR)变化预计会对冰圈过程产生相当大的影响(Beniston等,2018)。此外,大气温室气体浓度的增加也会导致气候变化的变化(Boer等,2000)。到目前为止仍然鲜为人知的一个主题是这些气候过程在冰川化的地区如何运作,在冰川地区,原位详细的测量通常很少或不存在。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年3月2日发布。 https://doi.org/10.1101/2025.02.28.640897 doi:Biorxiv Preprint
计算机断层扫描(CT)扫描,于1970年代引入,标志着医学成像的开创性进步。由英国工程师Godfrey Hounsfield和物理学家Allan Cormack开发,CT扫描使用X射线梁创建大脑的横截面图像。这项技术比传统的X射线提供了更大的分辨率,使临床医生能够以更高的精度检测肿瘤,出血和结构异常。尽管具有优势,但CT成像的区分能力有限,并使患者暴露于电离辐射,从而促使人们寻找更安全,更详细的成像方法[2]。
b'b't量子Zeno效应以最简单的形式描述了量子系统的频率测量可以减慢其时间演变的现象,最终导致其停止完全改变。已广泛研究了封闭的量子系统[BN67,MS77,CHE72,FRI76,FP08,EI05,EI21]和开放量子系统[MS03,BZ18,BFN + 20,MW19,MW19,MW19,MAT04,GL \ XC2 \ XC2 \ XC2 \ XA8U16,BDS21,MRM MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR M \ XC2 \ XA8O24]和现象的实验验证是在[IHBW90,FGMR01,SMB + 06,SHC + 14]中实现的。量子ZENO效应具有各种应用,例如在控制反应[FJP04,HRB + 06],量子误差校正[EARV04,PSRDL12]和状态准备[NTY03,NUY04,WYN08]中。在这里,我们考虑以下在量子动力学半群下进化的无限二维开放量子系统中的量子zeno效应的一般设置,该系统由e t l'
个性化营养在目前的实施中的发展持续了二十年。尽管在临床环境中基本上令人信服,但PN和相关软件技术的基础科学基础仍然需要在商业消费者的情况下显着改善。市场上的提供商仍在开发和测试商业上可行的商业模式,以便能够以可承受的价格提供值得信赖且具有科学有效的服务。基于基因组学的PN提供者的数量在全球范围很小(约50个,在英国约15个),而服务市场仍然是好奇的客户,他们进行一次性购买或订阅了几个月。提供个性化食品的PN提供商正在以个性化的维生素配方的形式或由英国食品法监管的餐奶昔或小吃吧/饼干而食用的补充混合物。因此,这些业务需要注册为食品业务运营商(FBO)。
在当今数字链接的世界中,网络威胁变得比以往任何时候都变得越来越复杂。今天发现的一些危险恶意软件包括病毒,勒索软件和间谍软件。特征是,该恶意软件使个人和组织面临严重威胁。通过使用检测其存在的工具来分析恶意软件,了解其存在,了解其行为并致力于缓解它,从而减轻了这些威胁。本文在过去15年内强调了恶意软件分析工具的发展,特别关注静态,动态和混合方法的恶意软件分析方法。此外,它解决了恶意软件分析所涉及的方法,概述了检测的挑战,并证明了现实生活中的案例研究,显示了这种工具的效果。其他主题包括道德和法律方面,人工智能的作用以及未来在恶意软件分析中的趋势。
