持续感染高危型人乳头瘤病毒 (HR-HPV) 以及随后的病毒癌蛋白 E6 和 E7 上调被认为是宫颈癌变中的关键分子事件 ( 1 , 2 )。这些癌蛋白会干扰关键宿主肿瘤抑制蛋白的功能,导致恶性转化。具体来说,E6 会促进 p53 的降解,p53 是一种对程序性细胞死亡至关重要的肿瘤抑制因子,而 E7 则会抑制通常调节细胞周期进程的视网膜母细胞瘤蛋白 (pRb) ( 3 , 4 )。p53 和 pRb 功能的破坏会导致染色体不稳定和癌症发展 ( 5 )。在各种 HR-HPV 类型中,HPV16 最为常见(其次是 HPV18),是全球 50% 以上宫颈癌病例的诱因 ( 6 – 8 )。 HPV 感染发生在宫颈上皮未分化的基底细胞中,病毒早期蛋白 E1、E2、E6 和 E7 在此细胞中表达水平较低(9)。随着被感染细胞的分化,病毒晚期蛋白 L1 和 L2 产生,用于衣壳的形成和病毒颗粒的组装。E4 蛋白通过与宿主细胞骨架结合协助病毒颗粒的释放(10,11)。高免疫原性的 L1 蛋白的产生受宿主蛋白和表观遗传修饰的调控,确保其仅在分化细胞中表达,从而逃避免疫检测(12)。HPV16 L1 蛋白及其相关 mRNA 在低度宫颈病变和增殖性感染中可检测到,但其缺失与高度病变高度相关(13,14)。虽然 L1 编码序列在转化细胞中保持完整,但衣壳蛋白不会合成(15)。尽管 HR-HPV 感染是宫颈癌的必要前兆,但只有一小部分感染者会发展为宫颈癌 ( 16 , 17 )。目前的 HPV DNA 检测不足以准确识别需要阴道镜检查的 HR-HPV 阳性女性,因为许多感染都是暂时性的 ( 18 )。目前建议对 HPV16 和 HPV18 进行基因分型,并结合细胞学检查进行宫颈癌筛查 ( 19 );然而,需要更特异的生物标志物来分类 HPV16 或 HPV18 阳性的女性,并减少不必要的阴道镜转诊 ( 20 , 21 )。宿主基因和 HPV 基因的甲基化已得到广泛研究,并被证实与宫颈异常有关 ( 22 , 23 )。甲基化修饰,例如 L1 基因内的 CpG 位点甲基化,可以控制该基因的表达,该基因在转化的宫颈细胞中经常被沉默。亚硫酸氢盐测序报告称 3' L1 基因区域的甲基化水平较高,表明其在控制 L1 表达方面具有潜在作用 ( 24 , 25 );然而,亚硫酸氢盐测序和直接测序等方法可能导致临床样本中甲基化水平估计不准确。焦磷酸测序,一种更准确的定量方法,已用于测量 HPV DNA 甲基化,揭示了各种 HPV 类型的 L1 和 L2 区域的高甲基化( 26 , 27 )。最近的研究表明,L1 基因甲基化可以区分宫颈上皮内瘤变 3 (CIN3) 和浸润性宫颈癌( 26 , 28 )。
摘要——人工智能 (AI) 的快速发展需要对其潜在的负面影响和不可否认的好处进行批判性评估。本文深入探讨了人工智能在当代世界的多方面危险。通过研究现实世界的例子,本文探讨了人工智能如何通过算法偏见加剧现有的不平等,如何通过取代工作来扰乱劳动力市场,以及如何引发对隐私侵犯和不可预见的后果的担忧。通过强调这些风险,本文强调了负责任地开发和部署人工智能的重要性。它提倡建立强有力的道德框架和缓解策略,以确保人工智能成为积极社会变革的力量,减轻潜在危险并促进其负责任的应用,以造福人类。
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
摘要 - 在高等教育中,培养鼓励学生参与现实世界挑战的环境对于专业发展至关重要。这一原则为我们与第八学期纳米技术工程专业学生的合作努力支撑。通过创新的方法,例如合成结合菠萝果皮的聚合物纤维,我们解决了环境问题并利用菠萝废物的未开发潜力。菠萝行业每年产生大量的非利用废物,主要是茎,牙冠和果皮,占整个水果的67%。菠萝果皮富含生物活性化合物(如多酚)对化妆品行业的应用有望,如果将它们纳入合适的输送系统中,则可能会增强产品(例如提拉配方)。在目前的工作中,使用商业挤出机合成了装有10%,20%和30%菠萝果皮粉(PP)的聚乳酸(PLA)和多碳酸酯(PCL)纤维。傅立叶变换红外和差异扫描量热法证实了由于形成了新的化学键和相互作用的有效PP掺入纤维中。使用扫描电子显微镜(SEM)进行的形态表征表明,纤维的横截面长度从3.7μm到90.19μm。高性能液相色谱和叶核方法评估了酚类化合物含量和释放速率。PLA纤维具有20%的PP,显示出酚类化合物的最大保留率,为1243.69±234.14 µg化合物/ g纤维),而PCL纤维在24小时内显示出迅速释放,高达95.79±5.94%。这些结果表明,商业挤出机可以在化妆工业中可能使用的聚合物微纤维作为菠萝果皮中酚类化合物的递送系统的可行性。
通过观察、问卷调查和其他技术,心理学家已经能够引出个体操作员(通常是飞行员)的心理模型。然而,将设计与特定个体的心理模型进行比较只能提供非常具体的信息;我们感兴趣的是设计是否容易产生模式混淆,为此,将设计与通用心理模型进行比较比将设计与个体心理模型进行比较更有用。这种通用模型可以从培训材料中提取(培训手册的目的之一,通常是隐含的,就是诱导足够的心理模型),也可以指定为明确的要求(例如,“这个按钮应该像一个切换按钮一样运行”)。认知研究对这些模型的性质提供了两个重要见解:首先,它们可以用称为“状态机”的数学结构紧凑地表示;第二,它们往往相当简单(这可以通过应用两个规范的简化来解释[3])。
今天,对水产养殖产量的需求不断增长,伴随着各种挑战,例如疾病,育雏症改善,驯化,合适的颗粒的发展和喂养方法,孵化场技术和水质管理。因此,据报道,益生菌的使用是抗生素,其他化学治疗剂以及其他替代成分的其他补充剂的理想替代品。益生菌的主要利益作用包括增强疾病和抗压力,免疫力,促进生长和繁殖,改善消化,提供多种营养以及水微生物组成的增强。为了确保安全性,所提供的益生菌必须是非侵入性和非致病性的。直接或与替代材料(例如植物蛋白质饮食,维生素,微藻,发酵产品等)结合使用益生菌,已被证明可以改善水生动物的健康和生长,并为行业的可持续性提供显着的利益。倡导一种系统的方法来进行创新的研究以发掘新的推定菌株,这对于确保可持续的益生菌使用量非常重要,因此可以帮助持续发展水产养殖行业,尤其是在中国。在中国发现的益生菌的一些例子主要是光合细菌(PSB),它们是能够光合作用,拮抗细菌的自养细菌(pseudoalteromonas sp。,pseudoalteromonas sp。,flavobacterium sp。,Alteromonas sp。,Alteromonas sp。,phaeobacter sp。),改善水质的细菌(硝化细菌,硝化细菌等。),在消化过程中贡献营养和酶的细菌(乳酸菌,酵母等。),bdellovibrio和其他益生菌。本综述还着重于益生菌在水产养殖中的潜在使用,尤其是在中国,以及益生菌的未来作用。
涉及先天免疫细胞的炎症失调,特别是单核细胞/巨噬细胞谱系,是导致Duchenne肌肉营养不良症(DMD)发病机理的关键因素。受过训练的免疫力是一种抗感染的进化古老的保护机制,其中表观遗传和代谢改变赋予了先天免疫细胞对各种刺激的非特殊性过度反应性。在DMD动物模型(MDX小鼠)中的最新工作表明,巨噬细胞表现出训练有素的免疫力的基本特征,包括存在先天免疫系统“记忆”。通过骨髓移植对训练的表型对健康的非疾病小鼠的表观遗传变化和耐用的可传播反映了后者。机械上,建议通过受损的肌肉受损的因素在骨髓水平上诱导了4个调节的,带有样本的先天免疫的记忆样能力,从而夸大了促进性和抗流量的基因的上调。在这里,我们提出了一个概念框架,以参与训练有素的免疫力参与DMD发病机理及其作为新的治疗靶点的潜力。
2023 年 10 月 20 日,拜登总统发布了一项行政命令 (E.O.)关于人工智能的安全、可靠和值得信赖的开发和使用 (E.O.14110)。该命令为人工智能 (AI) 安全和保障标准提供了指导。它补充了许多相关的美国政府政策文件,包括国务院关于负责任的军事使用人工智能和自主权的政治宣言和国家标准与技术研究所的人工智能风险管理框架。本洞察讨论了该命令对国家安全,特别是国防部 (DOD) 的潜在影响。CRS 报告 R47843《国会 2023 年人工智能行政命令要点》提供了该命令的更广泛概述,作者 Laurie A. Harris 和 Chris Jaikaran。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
