磁绝缘子是通过利用镁电流来传播自旋信息的理想平台。但是,到目前为止,大多数研究都集中在Y 3 Fe 5 O 12(YIG)和其他一些铁磁性绝缘子上,而不是纯铁磁体。在这项研究中,我们证明了镁电流可以在EUS的薄膜中传播磁极。通过使用PT电极进行EUS的18 nm厚胶片中的局部和非局部转运测量,我们检测到由Spin Seebeck效应引起的热产生产生的镁电流。通过比较局部和非局部信号与温度(<30 K)和磁场(<9 t)的依赖性,我们确认了非局部信号的镁传输来源。最后,我们在EUSFIM(〜140 nm)中提取了镁扩散长度,这是与在同一纤维中测得的大吉尔伯特阻尼的良好对应关系。
变量,例如刺激辐射的特征(流感,波长,脉冲持续时间等)以及组成材料(NP的大小和形状)都可以在E-GAS加热和能量释放途径中起关键作用。[23–32]此外,材料探针的温度依赖性(例如电子特异性热,[33-35]界面热诱导性,[36]等)都会影响实际的放松动态。当前对等离子纳米系统中超快松弛过程的理解取决于超快的时间分辨光学的光学,并且在较小程度上是电子光谱镜[28,37-40] [28,37-40],因为这主要产生了有关时间依赖的电子 - 依赖性电子 - 离子或离子静电温度的间接信息。[41,42]另一方面,理论模型正在变得越来越精致,但无法处理,到目前为止,实际系统的复杂性。[3,15,22,43,44]
基于灯笼的发光材料在解决不同领域遇到的科学问题方面表现出很大的能力。然而,在单波长辐射下实现全彩切换输出仍然是一个艰巨的挑战。在这里,我们报告了一个概念模型,可以通过对单个商业980 nm激光器上的多层核心壳纳米结构的全面转换演变的时间控制实现这一目标,而不是以前报道的两个或多个激发波长。我们表明,它能够通过在ER-TM-YB三重系统中构建合作调制效果,在非稳态激发下实现红色到绿色的颜色变化(从ER 3+),并通过通过时间付费技术来填充短期付出的蓝光(来自TM 3+)。进一步证明了TM 3+在操纵ER 3+上的过渡动力学中的关键作用。我们的结果深入了解了灯笼的光体物理学,并有助于开发新一代的智能发光材料,以实现新兴的光子应用。
在时间范围内不断向后回滚的地方(通常称为“退缩的地平线控制”)。即使MPC控制器按定义依赖于系统模型,模型参数中的某些不确定性或预测外部干扰时的不确定性可以通过状态反馈循环来补偿,该状态反馈循环在随后的最佳最佳控制问题中适应实际系统响应。在优化工业过程(Bordons&Camacho,1998)和交通流量(Ferrara等,2015)中,可以找到许多MPC应用,其中控制器用于应对时间变化的参数和不断发展的边界条件。MPC对于风电场的协调至关重要(Vali等,2019),这会在风向上永久变化。基于MPC的控制器也证实了它们在自动驾驶中的效率,在该自动驾驶中,车辆面临动态障碍(Babu等,2018)。在结构控制中,大多数MPC控制器都依赖于预测外部激发力演化的专门设计的动态模型。Oveisi等。 (2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。 该方法已成功验证了受谐波干扰的压电层压梁的验证。 Wasilewski等人。 (2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。 (2007)。Oveisi等。(2018)开发了一种递归的最小二乘算法来估算干扰信号,该算法不断更新并用于确定退化的地平线控制。该方法已成功验证了受谐波干扰的压电层压梁的验证。Wasilewski等人。(2019年),从自回归模型中回收了地震激发,并将其前进到MPC Conloller,这稳定了使用液压执行器的多局建筑物的振动。(2007)。在Zelleke和Matsagar(2019)中,开发了一种基于能量的预测控制算法,以抑制受风激发的多局建筑物的振动。Yuen等人提出了一种基于概率的鲁棒性控制方法来减轻暴露于不确定激发的细长建筑物的振动的替代方法。在Takacs和Rohal'-Ilkiv(2014)中测试了五种最佳和次优MPC方法,以确定它们的构成复杂性和在线启动的能力,以减轻配备Piezoce-Ramic Control设备的自由,稳态和短暂振动。作者观察到最佳和次优策略之间的控制绩效没有显着多样性。他们建议在计算上有效的次优方法(例如,最低时间显式或牛顿– Raphson的MPC)可以用于较大维度的系统而不会大大损失性能的系统。
摘要:光学微/纳米图案的高质量制造的可用性为基于光学机械(OM)声音和光的相互作用而开发的可扩展电路和设备的道路铺平了道路。在这项贡献中,我们提出了一项有关OM腔的新研究,可以使其与紧密整合的波导对其耦合进行精确控制,这是增强模式激发和波浪能陷入诱因的必要条件,为波浪指导,滤波,滤波,填料,结合和传感打开了许多潜在应用的可能性。此外,可以避免对笨重的实验设置和/或光纤维耦合/激发的需求。同时,优化了在腔体中共鸣的机械和光学模式的质量因素,以及它们的OM耦合系数:两种激发的高度结合是实现其声音(AO)相互作用的先决条件。为此,腔体的横向大小已被抛物面,具有将腔分离的额外好处和远离耦合区域的集成波导。有限元方法已用于执行全波分析,并提供了有关正确描述光学散射和辐射所需的模拟设置的准确讨论。
[1] D.Faktorová,M。Kuba,S。Pavlíková和P. Fabo,“使用现代微控制器的阻抗光谱实施”,Procedia结构完整性,第1卷。43,pp。288-293,2023。[2] Q. Yao,D.-D.-C。 Lu和G. Lei,“具有低输出电压波动器上电源转换器上的精确在线电池阻抗测量方法”,Energies,第1卷。 14,否。 4,p。 1064,2021年2月。[3] P. Haussmann,J。J. Melbert,“使用电动汽车的标准电池管理系统通过阻抗光谱进行传感器单个细胞温度测量,” SAE技术文件2020-01-0863,2020。 报价和N. P. Brandon,“使用电动机控制器激发对电池阻抗的在线测量”,《 IEEE车辆技术交易》,第1卷。 63,否。 6,pp。 2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。。。288-293,2023。[2] Q. Yao,D.-D.-C。 Lu和G. Lei,“具有低输出电压波动器上电源转换器上的精确在线电池阻抗测量方法”,Energies,第1卷。14,否。4,p。 1064,2021年2月。[3] P. Haussmann,J。J. Melbert,“使用电动汽车的标准电池管理系统通过阻抗光谱进行传感器单个细胞温度测量,” SAE技术文件2020-01-0863,2020。报价和N. P. Brandon,“使用电动机控制器激发对电池阻抗的在线测量”,《 IEEE车辆技术交易》,第1卷。63,否。6,pp。2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。。2557-2566,2014年7月。[5] A. Christensen和A. Adebusuyi,“在电池管理系统中使用板载电化学阻抗光谱,” 2013年世界电动汽车研讨会(EVS27),巴塞罗那,西班牙,西班牙,PP。1-7,2013。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介
基态和电子激发态之间的能隙。在超导基态,电子配对为超导电荷载体,称为库珀对 [3],由于声子发射/吸收引起的弱引力,其结合能为 2 Δ。当超导体吸收能量时(例如来自足够高能量的光子),库珀对会分解为从基态激发出的电子,称为“准粒子”。通常,准粒子激发的超导能隙 Δ 比光子的能量(meV 对 eV)小几个数量级。因此,可见光或近红外波段的单个光子可以产生数百或数千个准粒子激发。计算单光子吸收事件后准粒子激发的数量已被证明是一种成功的检测方法,可用于超导隧道结 (STJ) 和动能电感探测器 (KID)。计算准粒子激发的另一种方法是使用基于微量热计的能量分辨探测器,例如过渡边缘传感器 (TES),它可以用灵敏的温度计测量单光子吸收后的温度变化 [4]。最后,当电流密度超过电流密度的“临界”值 J c 时,超导材料在固定温度下的特性切换已被利用来实现超导
相互作用系统通常以它们的基态和低能激发的特性为特征。例如,在自旋系统中,即使基态可能相似,低能激发的特征也可以将海森堡模型与伊辛或 XY 模型区分开来。在量子材料中,可以通过仔细对它们的激发进行分类来区分各种各样的有间隙系统(由电荷密度波、强关联或超导引起)。低能激发的特性因材料所表现出的物理行为而异。考虑一个绝缘体,其低能行为可以用相互作用的自旋很好地描述。它将表现出与金属费米液体不同的低能激发,而金属费米液体的低能行为可以用电子准粒子很好地描述。此外,不同的探针(如光导率、中子散射或光发射)可以探测系统的不同方面。举一个具体的例子,我们来看看 Fe 基超导体 FeSe 的低能激发。我们已经从自旋(中子)[ 1 ] 和电荷(光学)[ 2 ] 两个角度对这些激发进行了研究。这两个角度提供的关于材料的相关信息相互补充。有些多体相互作用系统可以通过分析确定其光谱。在自旋系统中(如 XY 模型),Holstein-Primakoff [ 3 ] 或 Jordan-Wigner [ 4 ] 变换会将系统转换为可以立即确定激发光谱的形式。这是因为自旋系统的激发实际上具有费米子特性,而这种特性在原始自旋图像中很难提取。另一种方法是猜测波函数,然后获得激发,例如 BCS 理论 [ 5 ] 或量子霍尔效应 [ 6 ]。然而,对于一大类系统,还没有已知的精确解,必须通过数值方法获得编码低能激发的相关函数。可以通过以下方式实现
摘要:我们利用单色异常校正的扫描透射电子显微镜的高空间和能量分辨率研究等离激元纳米棒的循环组件的杂交。详细的实验和模拟阐明了耦合的长轴偶极模式杂交到集体磁和电偶极等离子体等离子体共振。我们通过电子能量损失光谱法解决了这些封闭环的低聚物中的磁偶极模式,并确认具有其特征光谱图像的模式分配。随着多边形边缘的数量(n)的数量,磁模式的能量分裂和反管模式增加。在研究的N = 3-6个低聚物中,使用正常入射率和S偏斜的倾斜入射的光学模拟显示,在N = 4排列中,相应的电和磁模式的灭绝效率最大化。