在脊椎动物中,甲状腺纤维蛋白是一种高度保守的糖蛋白激素,除了甲状腺刺激激素(TSH)外,它是TSH受体的有效配体。甲状腺激素被认为是其亚基GPA2和GPB5的最祖先糖蛋白激素和直系同源物,在脊椎动物和无脊椎动物中广泛保守。与TSH不同,甲状腺纤维蛋白神经内分泌系统的功能在很大程度上尚未探索。在这里,我们在秀丽隐杆线虫中确定了功能性甲状腺抑制蛋白样信号传导系统。我们表明,GPA2和GPB5的直系同源物以及甲状腺激素释放激素(TRH)相关的神经肽构成了促进秀丽隐杆线虫生长的神经内分泌途径。GPA2/GPB5信号是正常体型所必需的,并通过激活糖蛋白激素受体直立型FSHR-1来起作用。秀丽隐杆线虫GPA2和GPB5在体外增加了FSHR-1的cAMP信号传导。两个亚基均在肠神经元中表达,并通过向其神经胶质细胞和肠受体发出信号来促进生长。受损的GPA2/GPB5信号传导导致肠腔腹胀。此外,缺乏甲基抑制蛋白的信号传导的突变体显示出增加的排便周期。我们的研究表明,甲状腺激素GPA2/GPB5途径是一种古老的肠神经内分泌系统,可调节Ecdysozoans的肠道功能,并且可能在祖先中参与了对生物生长的控制。
联合国成员国在2015年采用的可持续发展目标(SDG)认识到需要可持续农业,这将使人类的生计和保护环境有益。随着对食品,饲料,饲料和生物燃料生产的需求继续加剧,气候变化的影响(SDG 17)和相关的环境因素仍然是农业的关注。在全球范围内,现代技术在农业中的应用,例如精确耕作技术(例如,GPS引导的拖拉机,无人机和传感器),生物技术(包括遗传工程和分子育种),人工智能(AI)和Robotics和Robots在高度的研究中遇到了重要的研究,并且是多元化的研究,并且是多样化的研究,并且是多元化的研究。营养丰富的作物品种(Abiri等,2023; Ivezic ́等,2023)。例如,生物技术系统(例如使用植物激素在维持植物生产力中)在农业生产力中表现出巨大的潜力。植物激素,通常被视为植物生长调节剂(PGR),是关键信号分子,在有利且不利的条件下调节植物生理和生化过程(El Sabagh等,2022)。这些多样化的植物激素[ 2016)。
目前尚不清楚链格孢属植物产生的复杂霉菌毒素混合物在生理条件下是否具有雌激素作用和/或遗传毒性,特别是考虑到它与食品中的抗氧化剂同时存在。因此,本研究重点探讨了 N-乙酰半胱氨酸 (NAC) 作为代表性抗氧化 SH 供体对特征性链格孢毒素 alter-nariol (AOH)、altertoxin-II (ATX-II) 和链格孢培养物的复杂提取物 (CE) 上述毒理学终点的影响。以石川细胞为体外模型,我们通过 LC-MS/MS 监测毒素浓度的变化,通过碱性磷酸酶测定法监测雌激素性,通过磺酰罗丹明 B 测定法监测细胞毒性,通过单细胞凝胶电泳法监测遗传毒性,并通过定量实时 PCR 监测选定的目的基因的转录。结果表明,在 NAC 存在下,携带环氧化物的苝醌(如 ATX-II)的强烈遗传毒性作用被消除。ATX-II/AOH 混合物的细胞效应主要由苝醌的遗传毒性决定。在这种混合物中,当与 NAC 共培养时,AOH 恢复了其雌激素性。相反,用 NAC 处理 AOH/CE 混合物不会导致雌激素性恢复,但会增强抗雌激素作用。这些发现与基因转录数据一致,表明芳烃受体 (AhR) 是链格孢毒素诱导的对雌激素受体信号的拮抗作用的主要介质。综上所述,进一步研究非遗传毒性苝醌的潜在内分泌干扰特性应成为这些新兴污染物领域未来的研究重点。© 2022 作者。由 Elsevier BV 代表科爱传播有限公司提供出版服务。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)。
1个风湿病学实验室,吉加研究,库迪格,李格大学,比利时4000liège; genevieve.paulissen@chuliege.be(G.P.); celine.deroyer@chuliege.be(C.D.); ciregia@gmail.com(f.c.); Christophe.poulet@chuliege.be(C.P.); sophie.neuville@chuliege.be(s.n.); zelda.plener@chuliege.be(Z.P.); ddeseny@chuliege.be(D.D.S.); michel.malaise@chuliege.be(M.M.)2比利时4000Liège的Chu deliège的骨科手术部; Christophe.daniel@chuliege.be(C.D.); philippe.gillet@chuliege.be(P.G.)3 BELGIUM的Chu deliège血液学系细胞和基因治疗实验室; c.lechanteur@chuliege.be Be 4再生医学与生物治疗研究所,Univ Montpellier,Inserm umr1183,34298法国蒙彼利埃; jean-marc.brondello@inserm.fr *通信:olivier.malaise@chuliege.be;电话。: +32-4-366-7863†这些作者对这项工作也同样贡献。‡这些作者对这项工作也同样贡献。
全基因组的关联研究人类松果体体积作为褪黑激素分泌的代理Peng Xu#1,Mohammed Aslam Imtiaz#1,Daniel Rusman 1,Santiago Estrada 1,2,Martin Reuter 2,3,4,Monique M.B.Breteler 1,5,N。AhmadAziz 1,6,* 1人口健康科学,德国神经退行性疾病中心(DZNE),德国波恩,德国2个人工智能,医学成像中的人工智能,德国神经退行性疾病中心(DZNE),BONN,BONN,BONN,德国,3 A.A. A.A.马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州的马蒂诺斯生物医学成像中心,美国4号放射学系,美国马萨诸塞州波士顿,美国马萨诸塞州波士顿5研究所,医学学和流行病学研究所(IMBIE),医学院,德国大学6. Neurologice of Bonn of Bonn of Bonn of Bonn,Bonn of Bonn撰稿人,哥伦比尔大学。*通讯作者:N。Ahmad Aziz博士,医学博士PhD人口健康科学德国神经退行性疾病中心(DZNE)Venusberg-campus 1/99,53127 Bonn Dermander email:ahmad.aziz@dzne.dzne.dzne.de no.数字:4号表格:1补充文件:补充图:8补充表:21个贡献者:PX,MAI,MMBB和NAA概念化了该项目。手稿的初稿是由PX,MAI和NAA撰写的。通过PX,MAI和NAA分析数据。DR,SE,MR和MMBB提供了技术,统计和方法论建议。 所有作者都提供了重要的反馈,并为手稿的最终版本的写作和修订做出了贡献。 利益冲突:作者没有报告任何利益冲突。DR,SE,MR和MMBB提供了技术,统计和方法论建议。所有作者都提供了重要的反馈,并为手稿的最终版本的写作和修订做出了贡献。利益冲突:作者没有报告任何利益冲突。致谢:我们要感谢莱茵兰研究团队支持数据获取和管理。这项工作得到了DZNE机构基金,联邦教育和德国教育部(FKZ:031L0206,01GQ1801,01KX2230),Helmholtz协会,2023年和2024 Innovations-innovations-forschungsche forschungsgemeinschaft(Decter-forschungsgemeinschaft)(DFENDENDENDENDENDENDENDENDENDENDERDENDENDERDIND DICDENDIND DINDECTIND) 432325352),阿尔茨海默氏症协会研究赠款(奖励号:AARG-19-616534),Chan Zuckerberg倡议
一个大学。里尔,INSERM,CHU LILLE,LILLE神经科学与认知,UMR-S 1172,Estalz,Lille,法国,法国B部内分泌学和调查医学,伦敦帝国学院,伦敦,英国伦敦,英国C CHU LILLE,病理学系,中心病原学,法国D Cimus d Cimus d Cimus d Cimus d cimus de santia deia deia compertela,santiago dea compastela西班牙E吕贝克大学实验和临床药理学和毒理学研究所Digestivas(Ciberehd),西班牙马德里,马德里郡H H Chu Lille,妇科与妇产部,珍妮·德·弗兰德雷斯医院,F-59000,法国I Lille,I I I Neurobiology的实验室,实验性医学,实验性医学研究所。Lille, Inserm, CHU Lille, Service de Médecine Intensive Réanimation, U1190, EGID, F-59000 Lille, France k University Lille, Inserm, CHU Lille, Centre d ' investigation Clinique (CIC) 1403, F-59000, Lille, France l LICORNE Study Group, CHU Lille, Lille, France m Department of Experimental and Clinical Medicine, University of意大利佛罗伦萨,意大利n chu Lille,新生儿学系,HôpitalJeanne de Flandre,FHU,FHU 1000天,F -59000,F -59000,法国O大学里尔,CNR,CNRS,CNRS,INSERM,INSERM,INSERM,CHU LILLE,INSERM,CHU LILLE,INTERUR DE LILLE Lille,Service de Biochimie et hormonologie,Center de Biologie Pathologie,Lille,法国Q Univ。里尔,Inserm U1285,Chu Lille,复苏杆,CNRS,UMR 8576 -UGSF -UGSF-结构和功能性糖生物学单元,F -59000,法国里尔,法国Rille,内分泌学部,内分泌学系,帝国大学医疗保健NHS NHS NHS NHS NHS NHS Trust,伦敦,英国王后,英国王后,建筑801A,drio niria diveria,b. 48160,deria,488160,deria>
从遗传学的角度来看,神经元类型的失衡与精神病和神经系统疾病有关,但这是第一个显示出对环境暴露产生相同影响的研究。需要进行更多的研究来了解这项研究对疾病风险意味着什么:“我们看到抑制性神经元的数量增加,但是我们的研究结果并未表明这是否意味着以后生活中某些疾病的风险或韧性增加,” Cruceanu解释说。
w在320至355 nm之间,最大发射波长反映了W对溶剂的暴露。在水溶液(PBS 1X)中测量这种荧光在非结构环境中观察(肽不会在水中形成α-螺旋)和胶束溶液,以研究脂肪样微环境的效果(图6a.3和6b.3)。我们观察到,超过1 mm,即DPC的CMC,DRS-B2的荧光发射最大值和H-B2移动向更短波长(“蓝移”),并显示出荧光强度的强烈增加(高染料移位)。这些光谱变化反映了从亲水性到疏水环境的变化,可以通过埋在DPC胶束的疏水层中的W残基来解释,或者
免疫原性细胞死亡(ICD)在临床上具有相关性,因为通过ICD杀死恶性细胞的细胞毒素会引起抗癌免疫反应,从而延长了化学疗法的影响,而不是治疗中断。ICD的特征是一系列刻板的变化,增加了垂死细胞的免疫原性:钙网蛋白在细胞表面的暴露,ATP的释放和高迁移率组Box 1蛋白以及I型Interferon反应。在这里,我们研究了抑制肿瘤激酶,间变性淋巴瘤激酶(ALK)的抑制可能性,可能会触发ICD在染色体易位因染色体易位而激活ALK的变性大细胞淋巴瘤(ALCL)中。多种证据辩称,有利于克唑替尼和塞替尼在ALK依赖性ALCL中的特异性ICD诱导作用:(i)它们在药理学相关的低浓度上诱导ICD Stigmata; (ii)可以通过ALK敲低模仿其ICD诱导效应; (iii)在支配碱性突变体的背景下失去了效果; (iv)通过抑制ALK下游运行的信号转导途径来模仿ICD诱导效应。当将经CERITIN的鼠类碱性ALCL细胞接种到免疫能力合成小鼠的左侧时,它们诱导了一种免疫反应,从而减慢了植入在右孔中的活Alcl细胞的生长。尽管Ceritinib诱导淋巴瘤小鼠的肿瘤的短暂收缩,无论其免疫能力如何,在免疫降低效率的背景下,复发频率更高,从而降低了Ceritinib对生存率的影响大约50%。完全治愈仅发生在免疫能力的小鼠中,并赋予了与表达同一碱性淋巴瘤的保护,但不与另一种无关的淋巴瘤进行保护。此外,PD-1阻滞的免疫疗法往往会提高治愈率。总的来说,这些结果支持了以下论点,即特异性ALK抑制作用通过诱导ICD诱导ALK-阳性ALCL刺激免疫系统。
摘要:本文介绍了褪黑激素与神经发育障碍之间的关系的回顾。首先,褪黑激素的抗氧化特性及其生理作用被认为可以更好地理解褪黑激素在典型和非典型神经发育中的作用。然后,在婴儿期期间发生的几种神经发育疾病,例如自闭症谱系障碍或与自闭症相关的神经遗传疾病(包括史密斯 - 玛格尼斯综合症,安吉尔曼综合症,雷特综合征,结节性硬化症或威廉姆斯综合症或威廉姆斯 - 伯伦综合症)和新的疾病疾病,后来又是伊斯特氏症,后来又是伊斯特氏症,以后再发生讨论了有关褪黑激素的产生和昼夜节律受损的讨论,尤其是睡眠 - 唤醒节奏。本文讨论了在这些不同的心理状况中通常观察到的重叠症状的问题,并辩论了褪黑激素生产异常的作用,并改变了昼夜节律在病理生理学和这些神经发育障碍的行为表达中的作用。