Mohamed Essalhi,Midhun Mohan,Gabriel Marineau-Plante,Adrien Schlachter,Thierry Maris等。基于S-Heptazine N-二氮的发光配位材料:合成,结构和发光研究,对具有因的结构和发光研究。道尔顿交易,2022,51(39),pp.15005-15016。10.1039/D2DT01924H。 hal-0463237110.1039/D2DT01924H。hal-04632371
飞秒激光制造技术已应用于光子范围模式(DE)多路复用器。基于飞秒激光制造技术的当前光子灯笼模式(DE)多路复用器设计主要遵循纤维型光子光子灯笼设计,该设计使用具有非均匀波导的轨迹对称结构进行选择性模式激发。但是,非均匀的波导可能导致不一致的波导传输和耦合损失。轨迹对称设计的选择性模式激发效率低下。因此,我们使用具有均匀波导的轨迹不对称性和制造的超快激光默认的光子灯笼模式(DE)多路复用器优化了设计。在1550 nm处的一致的波导传输和耦合损耗(分别为0.1 db/cm和0.2 db/facet)在均匀的单模波导上获得。基于光子灯笼模式(DE)多路复用器的轨迹 - 空气设计,有效模式激发(,,和)的平均插入损失在1550 nm时的平均插入损失低至1 dB,并且模式依赖性损失小于0.3 db。光子范围的设计对极化不敏感,而两极分化确定的损失小于0.2 dB。以及通过纤维型极化光束拆分器所实现的偏振化多路复用,六个信号通道(,,,,和)携带42个Gaud/s正交相位移位键信号,通过几个模式纤维进行传输,用于光学透射。这项研究的发现为3D集成光子芯片在大容量光学传输系统中的实际应用铺平了道路。系统的平均插入损失小于5 dB,而其与几种模式纤维的最大串扰小于-12 dB,导致4-DB功率损失。
1 National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720, USA 2 Astrobiology Center, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 3 LESIA, Observatoire de Paris, Universite PSL, CNRS, Sorbonne Universite, Sorbonne Paris Cite, 5 place Jules Janssen,92195法国Meudon 4悉尼天体仪器仪器实验室,悉尼大学物理学院,悉尼大学,悉尼,新南威尔士州,新南威尔士州2006年,澳大利亚5澳大利亚5管家,亚利桑那州图森大学,亚利桑那大学,亚利桑那州85721,美国6 USICAL SCIENCES 6 ARIZONES,ARIZONE,INSIZONA,TUCSON,TUCSON,TUCSON,AZ 85721,AZ 85721111 BLVD,PASADENA,CA 91125,美国8韩国天文学与太空科学研究所(KASI),大韩民国大道34055,加利福尼亚大学9,加利福尼亚大学,欧文分校,G302 C学生中心,CA 92697,CA 92697,CA 92697,美国10号加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,405 Hilgard Averentry,Ca 90095. 90095,美国90095. 9009595.物理学,悉尼大学,新南威尔士大学,2006年,澳大利亚12 AAO-USYD,悉尼大学物理学院,悉尼,悉尼,2006年,2006年,澳大利亚13,佛罗里达州中央佛罗里达大学4304 Scorpius ST,Orlando Scorpius ST,Orlando 4304东京大学,东京邦基 - 库7-3-1,日本113-0033,日本16 Naoj,2-21-1-1-1-1-1-1-1-1-171-8588,日本17物理与天文学系,得克萨斯大学,得克萨斯大学,得克萨斯大学,位于圣安东尼奥,圣安东尼奥,圣安东尼奥,TX 78006,美国TX 788006,美国18 Univ。Grenoble Alpes,CNRS,IPAG,414 Rue de la Piscine,38400 Saint-Martin-D'Hères,法国,
定量推理:为小学学生开发解决问题的技能,定量推理有助于个人发展数学和分析技能以解决问题。这个概念对于小学生要掌握解决教科书问题背后的逻辑至关重要。在这里,我们将在3、4和5年级的尼日利亚学生推荐的教科书中进行示例。示例1:批判性地思考定量推理的一个优点是,它鼓励深入思考产生正确的答案。这里使用的技术涉及一种模式:(2*3)-5 = 1(16*3)-5 = 43(27*3)-5 = 76(40*3) - 5 = 115遵循此格式以解决其余问题:(10*3)-5 = 25 = 25(15*3)-5 = 40(33*3)-5 = 40(33*3) - 5 = 94(5 = 94(54(54))下面讨论:139 * 3 = 417 258 * 2 = 516以解决第一个问题,将113乘以5乘以565。因此,答案将在框中。示例3:分数和小数(9*4)除以9 = 36/3 = 12(36*5)/平方根的平方根36 = 180/6 = 30(64*2)/64 = 128/8 = 16示例的平方根/平方根示例4:模式和逻辑必须与行中的数字相同。对于第1行,数字为1、2、3、0、1。对于第1列,数字为1、2,G,0,T。G为3,T为1。对其余的使用相同的方法。示例5:第一个示例问题的模式和逻辑,将平方盒中的2和2取为22,并在三角形框中乘以3和6。然后减去圆形盒中的22 - (6*3)= 4。使用此方法解决图6-10的问题。第二个样本是18 - (2*5)= 8,第三个样本为22 - (7*3)= 1。示例6:求解图1-5的图案和逻辑,将前两列添加在一起以获取第三列。例如,4118 + 5420 = 9538和1257 + 3482 = 4739。另外,从第二列中减去第一列以获取第四列。例如,5420-4118 = 1302和3482-1257 = 2225。示例7:图案和逻辑如果查看第一个示例,请将左侧添加在一起(7+5+4+3 = 19)和右侧(9+12+15+21 = 57)。然后,乘以左侧的总和(19 x 3)以获取右侧的总和(57)。在第二个示例中相同:添加左侧(12+5+13+8 = 38)和右侧(24+36+36+15+39 = 114),然后将38乘以3乘以114。示例8:模式和逻辑(34/2) + 6 = 23(49/2) + 6 = 30 1/2(62/2) + 6 = 37(76/2) + 6 = 44使用此格式解决问题。示例9:第一个样本的模式和逻辑,格式为:(2+2+1+3)*3 = 24(0+4+3+6)*3 = 3 =练习1:第5-8页。答案:1。d2。b3。c4。d5。a6。A.6,000,000 + 51,000 + 500 =?答案:6,051,500
这是原始文本的重写版本:“通过应用用于求解这两个方程的方法 - (25)和(30) - 您可以轻松解决其余问题。如果您遇到任何定量推理问题,请随时在Twitter上与我联系以寻求帮助。此外,如果您需要更多的练习问题,只需向09059059123发送WhatsApp消息。这些定量推理问题和答案是从我们的书“针对主要5的定量推理问题”中汇编而成的,作为教师快速创建测试和考试问题的参考材料。它还可以帮助学生评估考试准备水平。每个样本问题都有正确的答案。例如,如果微软由675324281表示,则:(26)“ 83241”表示什么?(27)如何用代码(52148)写“房间”?(28)用代码(8741)写拳头?(29)'524624'代表什么?Costom/cosoms/cosmos/cosmis/comsom(30)在代码(6521)中写薄雾?”让我知道您是否需要进一步的帮助!
表现出照片刺激性响应特性的光致发光金属聚合物正在成为有前途的材料,并具有多功能的应用,可在照片可扎的图案,可穿戴的紫外线传感器和光学加密反击中。但是,将这些材料集成到需要快速响应时间,轻质质量,疲劳抵抗力和多种加密功能的实用应用中,会带来挑战。在这项研究中,具有快速自我修复特性的发光光致变色型金属聚合物是通过通过LN-TPY共同构成键和聚合物链之间的LN-TPY共构键和螺旋杆菌(SP)的交联型tpy(TPY)(TPY)和螺旋杆(SP)的。所得的产品具有一系列有趣的特征:i)使用螺旋桨单体没有其他掺杂剂; ii)由于LN-TPY和开放环螺旋形部分,在UV-Light下的双重发射性能; iii)来自聚合物链的令人满意的机械性能和自我修复能力; iv)通过光刺激或进料比调整,用于发光颜色的多个控制开关。利用这些属性,开发的材料为轻巧应用,高级信息加密,紫外线感应可穿戴设备以及对未来设计多功能智能材料的洞察力引入了新的机会。
特征性描述/值强度> 10 cd红色,360°根据ICAO附件14,低强度,A型寿命> 50,000h供应电压10 ... 50V标称功率<1.7W(12V/140MA; 24V/70MA)涌现的涌现故障失败综合(50,000,000 HAFFECTIANIDEN)FAILEDENT(50,000H)FAILS-SAFE-SAFE-SAFE-SAFE-SAFE SLEAVE light light light light light light light o.K.k.kk.kk。 :1.5V以下电源电压(开路)轻故障:0V温度范围-40 ... +55°C保护级IP 67,带有通风元件外壳铝,耐海水耐药的PMMA,抗紫外线的尺寸。 64 x 80毫米(没有塞子的身体)重量300g(0.66磅)特征性描述/值强度> 10 cd红色,360°根据ICAO附件14,低强度,A型寿命> 50,000h供应电压10 ... 50V标称功率<1.7W(12V/140MA; 24V/70MA)涌现的涌现故障失败综合(50,000,000 HAFFECTIANIDEN)FAILEDENT(50,000H)FAILS-SAFE-SAFE-SAFE-SAFE-SAFE SLEAVE light light light light light light light o.K.k.kk.kk。:1.5V以下电源电压(开路)轻故障:0V温度范围-40 ... +55°C保护级IP 67,带有通风元件外壳铝,耐海水耐药的PMMA,抗紫外线的尺寸。64 x 80毫米(没有塞子的身体)重量300g(0.66磅)
摘要:灯笼在光电子中主要用于掺杂剂,以增强半导体设备的物理和光学特性。在这项研究中,灯笼(III)氢氧化物纳米颗粒(LA(OH)3 NP)用作聚乙基亚胺(PEI)功能化的氮(N)掺杂的石墨烯量子点(PEI- N GQD)的掺杂剂。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。 在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。 I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。 发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。 作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。关键字:稀土元素,灯笼(III)氢氧化物掺杂,石墨烯量子点,绿色方法,纳米复合二极管,光敏性
摘要:分子灯笼(LN)复合物是用于发展下一代量子技术的有前途的候选者。高对称结构融合了整数自旋LN离子可以产生良好的晶体晶体磁场准两倍基态,即可能作为磁矩的基础的量子两级系统。最近的工作表明,在LN离子周围的协调环境的对称性降低可以在地面双线内产生避免的交叉或时钟过渡,从而导致相干性显着增强。Here, we employ single-crystal high-frequency electron paramagnetic resonance spectroscopy and high-level ab initio calculations to carry out a detailed investigation of the nine-coordinate complexes, [Ho III L 1 L 2 ], where L 1 = 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraaza-cyclododecane and L 2 = F - (1)或[MECN] 0(2)。由中性有机配体支架(L 1)施加的伪4倍对称性和顶端阴离子氟化物离子产生一个强轴向各向异性,其中1 m j =±8个地基态dbouptet在1中,其中m j表示j = 8 Spin-Orbital Moment to-Orbital Mistis of-Orbital Moments to to-Orbital Mistis of to-orbital Mistis ot to-orbital Mistis to to 4 kark 4 kaws k 4 kaw cc c c c c c c c c c c c 4 k. c c c c c 4 k 4次。与此同时,异位晶体场相互作用产生了该双重双线内巨大的116.4±1.0 GHz时钟过渡。然后,我们通过用中性MECN替换F-来证明时钟过渡的靶向晶体场工程(2),从而导致时钟过渡频率增加了2.2倍。实验结果与量子化学计算广泛一致。这种可调节性是高度可取的,因为由二阶对磁噪声尺度的敏感性与时钟过渡频率相反。