重新组合提供了对任何DNA序列进行快速,精确和廉价的遗传改变的能力,无论是在染色体中还是克隆到载体上,以在大肠杆菌(或其他重新组合的培养细菌)中复制的载体,并以高效的方式进行。可以在重新组合的几天内创建不可能用体外基因工程制造的复杂遗传构建体。与单链DNA(ssDNA)重新组合可用于创建单个或多个聚类点突变,小或大(最大或最大(最高10KB)缺失)以及小(10-20个基本)插入(例如序列标签)。使用优化的条件,可以使用如此高的频率进行点突变,以至于无需选择就可以找到它们。这项技术在创建定向和随机突变方面表现出色。
摘要 尽管靶向基因组编辑技术已成为加速功能基因组学的有力反向遗传方法,但由化学诱变剂诱导的传统突变体文库对于植物研究仍然很有价值。含有化学诱导突变的植物是简单而有效的遗传工具,可以在不考虑生物安全问题的情况下种植。突变体个体的全基因组测序减少了突变体筛选所需的工作量,从而提高了它们的实用性。在本研究中,我们对由用 N-甲基-N-亚硝脲 (MNU) 处理单个受精卵细胞而获得的 Oryza sativa cv. Nipponbare 突变体文库成员进行了测序。通过对该突变体文库中的 266 株 M 1 植物进行全基因组测序,我们总共鉴定出 66 万个诱导点突变。这个结果代表了 373 Mb 组装水稻基因组中每 146 kb 基因组序列中有一个突变。这些点突变均匀分布于整个水稻基因组中,超过 70,000 个点突变位于编码序列内。尽管该突变体文库规模较小,但近 61% 的所有注释水稻基因中均发现了非同义突变,8.6%(3248 个基因)的点突变对基因功能有较大影响,例如获得终止密码子或丢失起始密码子。WGS 表明使用水稻受精卵细胞的 MNU 诱变可有效诱导突变,适用于构建用于计算机突变体筛选系统的突变体文库。扩展该突变体文库及其数据库将提供一种有用的计算机筛选工具,以促进功能基因组学研究,特别是针对水稻。关键词:水稻突变体文库、N-甲基-N-亚硝脲 (MNU)、单核苷酸变体 (SNV)、NGS、计算机 TILLING、水稻、全基因组测序、遗传资源
代码中的一个拼写错误(称为点突变)可能会导致严重的疾病,就像单词中的一个拼写错误的字母可能会导致完全不同的含义:list 或 lost,batter 或 better。
• 最常见的遗传性血液疾病 • HBB 基因第 6 位的点突变将谷氨酸替换为缬氨酸 产生血红蛋白 S • 脱氧的 HgbS 分子聚合并改变红细胞的形状 • 红细胞形状改变会损害血液流动
摘要 CRISPR/Cas9 系统 ( 常间回文重复序列丛集 / 常间回文重复序列丛集关联蛋白系统 ) 为靶向基因编辑提 供了强大的技术手段 . 利用序列特异性 sgRNA 的引导 , CRISPR/Cas9 系统能够精准地在目标 DNA 的确切位置导 入双链切口 . 与已有的基因编辑手段相比 , 该系统具有更优异的简便性、特异性和有效性 . 目前 , 大量涉及体内 外多物种的 CRISPR/Cas9 基因编辑研究已充分展示了该技术的巨大潜力 , 为基于该技术的疾病治疗研究和临床 应用带来了希望 . 基于 CRISPR/Cas9 基因编辑技术所介导的非同源性末端连接和同源性 DNA 修复作用 , 近期多 个研究工作已经成功应用该技术修复了包括点突变和基因组缺失等在内的遗传疾病相关基因组缺陷 . 本综述 将总结近期有关利用 CRISPR/Cas9 基因编辑技术治疗人类遗传性疾病的相关临床前研究进展 .
Wilson病(WD)是一种基于ATP7B基因突变的单基因肝病,导致肝脏中铜(CU)的功能恶化。多余的Cu积聚在肝脏和大脑等各种器官中。WD患者显示出临床异质性,其范围从急性或慢性肝衰竭到神经系统症状。在大多数患者中用锌或螯合剂(例如D-苯胺胺)的终身治疗可以改善这种疾病的病程,但是在大部分患者中已经观察到了严重的副作用,例如神经系统恶化和肾脏毒性,因此不可避免地是肝移植。替代疗法选择是对ATP7B基因的遗传校正。最近在诊所中使用的新型基因治疗方法CRISPR/CAS9可能代表了合适的治疗机会。在这项研究中,我们首先使用CRISPR/CAS9基因编辑在人类细胞系中启动了人造ATP7B点突变,并通过额外使用单链寡核心DNA核苷酸(SSODN)来纠正该突变,从而模拟了VITRO中A WD点突变的基因校正。通过在唇彩后三天添加0.5 mm的Cu,可实现CRISPR/CAS9介导的ATP7B修复的细胞克隆的高收率(60%)。此外,使用结合了三个阻断突变的SSODN提高了修复效率。经过修复的细胞克隆在暴露于Cu浓度升高后对CU具有高抗性。我们的发现表明CRISPR/CAS9介导的ATP7B点突变的校正是可行的,并且可能有可能转移到诊所。
bcr-abl1定性测试对于融合基因的存在可能被认为是诊断慢性髓样白血病的医学上所必需的(请参阅政策指南)。bcr-abl1测试通过定量的实时逆转录 - 聚合酶链反应(RT-PCR)在基线之前进行治疗之前和在治疗过程中适当的间隔(请参阅策略指南),这对于监测慢性髓细胞性白血病治疗的反应和缓解可能是医学上必不可少的。在评估酪氨酸激酶抑制剂抗性的个体的ABL激酶结构点突变时,当对治疗的初始反应不足或任何反应丧失的迹象时,可能被认为是医学上必要的(请参阅策略指南);和/或当疾病发展为加速或爆炸阶段时。对ABL激酶结构点突变的评估被认为是在治疗衰竭或疾病进展迹象之前进行监测的研究。没有足够的证据支持有关与此程序相关的健康结果或益处的一般结论。
少汗性外胚层发育不良 (HED) 是一种罕见疾病。患有 HED 的患者从小就表现出头发稀疏、牙齿发育不良和无汗症,以及特应性皮炎样皮肤表现。我们报告了一名 20 岁的男性 HED 患者,他患有特应性皮炎样皮肤,经度匹鲁单抗成功治疗。基因分析发现 EDA 基因中存在剪接突变,NG_009809.2 (NM_001399.5):c.793 + 3A > C r.742_ 793del p.Pro248Ilefs Ter15,这是以前从未报道过的。该患者因全身瘙痒加剧而到我们科室就诊。根据皮疹的分布,患者被诊断为特应性皮炎并开始使用度匹鲁单抗。治疗第三个月皮疹减轻。dupilumab 在治疗与 Th2 免疫相关的遗传性皮肤病方面的潜力是已知的。尽管皮疹与 HED 的特应性皮炎样皮肤表现或独立的特应性皮炎有关尚不清楚,但 dupilumab 可能是治疗伴有特应性皮炎皮肤的 HED 的候选药物。
成簇的规则间隔短回文重复序列 (CRISPR) 是一种有前途的新技术,具有治疗遗传疾病的潜力。在将该技术应用于临床之前,需要进一步研究和开发治疗的安全性和特异性。向导 RNA (gRNA) 允许精确的位置特异性 DNA 靶向,尽管它可以容忍点突变等小变化。CRISPR-Cas 系统的宽容性质使等位基因特异性靶向成为一个具有挑战性的目标。因此,未来治疗患有由显性负突变引起的疾病的杂合子患者需要等位基因特异性靶向方法。由于仅在目标等位基因处存在新的 PAM 序列,单核苷酸多态性 (SNP) 衍生的原间隔区相邻基序 (PAM) 方法允许高度等位基因特异性的 DNA 切割。在这里,我们介绍了 CrisPam,这是一种计算工具,可检测变异等位基因内的 PAM,以便通过 CRISPR-Cas 系统进行等位基因特异性靶向。该算法扫描序列并尝试识别给定参考序列及其变异的多个 PAM 的生成。成功的结果是由变异核苷酸生成至少一个 PAM。由于 PAM 仅存在于变异等位基因中,因此 Cas 酶将专门与变异等位基因结合。分析人类致病点突变数据集显示,90% 的分析突变至少生成一个 PAM。因此,SNP 衍生的 PAM 方法非常适合以等位基因特异性方式靶向大多数点突变。CrisPam 简化了 gRNA 设计过程,以专门靶向感兴趣的等位基因,并扫描了来自 23 种 Cas 酶的 26 种独特 PAM。CrisPam 可在 https://www.danioffenlab.com/crispam 免费获取。
RET 原癌基因的异常激活与多种癌症有关。RET 获得功能点突变是多发性内分泌肿瘤 2 (MEN2) 综合征和散发性髓样甲状腺癌的驱动事件,而 RET 重排是多种非髓样甲状腺癌的驱动事件。能够抑制 RET 的药物已用于治疗 RET 突变癌症。最初使用的是多激酶抑制剂,尽管它们显示出适度的疗效和显著的毒性。然而,新的 RET 选择性抑制剂,如 selpercatinib 和 pralsetinib,最近已经过测试,并显示出良好的疗效和耐受性,即使目前还没有多激酶和选择性抑制剂之间的直接比较。高通量技术的出现已识别出除点突变和融合之外的罕见 RET 变异(包括 RET 缺失)的癌症,这引发了人们对这些变异是否具有功能性影响以及是否可以被 RET 抑制剂靶向的问题。在这篇小型综述中,我们重点关注具有 RET 缺失(包括缺失/插入 (indel))的肿瘤及其对 RET 抑制剂的反应。