在炼铁过程中,高炉是还原铁矿石的多相反应器。在此过程中,铁矿石和焦炭从炉顶装入,高温还原气体从炉底引入。随着气体上升,还原并熔化铁矿石,在粘结带中形成液态铁和炉渣。液体渗透过焦炭床到炉缸。在铁矿石的还原过程中,矿石软化,矿层被堆积的炉料压缩。众所周知,由于粘结带中矿石软化引起的结构变化对炉内气体渗透性有很大影响。矿石的软化行为受各种因素的影响,例如化学成分、还原气体成分、温度、物理性质等。为了了解粘结带,已经进行了几项实验来研究炉料的高温性质 1-6) 以及气体流动对粘结带中液体流动的影响
平台)................................................................................................................ 38
* 通讯作者电子邮件:adegnah@kacst.edu.sa * 通讯作者地址:沙特阿拉伯国家先进材料技术中心,阿卜杜勒阿齐兹国王科技城 (KACST),邮政信箱 6086,利雅得 11442;电话:+ 966 1 4883555 分机:4128
在使用钛合金粉末时,在定向能量沉积(DED)添加剂制造,粉末聚集和烧结时可能会发生在熔体池之外。使用原位同步子射线照相术,我们研究了池周围发生Ti6242粉末的烧结的机制,进行了一项参数研究,以确定激光功率和阶段遍历速度对烧结速度的影响。结果表明,尽管后者也降低了沉积层的厚度,但可以使用高激光功率或增加阶段横向速度来减少有害的烧结。DED期间烧结的机理被确定为激光束中粉末颗粒的飞行加热。在本研究中探索的加工条件下颗粒加热的计算证实,粉末颗粒可以合理地超过700℃,即Ti表面氧化物溶解的阈值,因此如果未掺入熔体池,则粉末容易烧结。沉积表面上烧结粉末层的堆积导致缺乏融合孔。为了减轻烧结的形成及其对DED组件质量的有害影响,至关重要的是,粉末输送点面积小于熔体池,以确保大多数粉末土地在熔体池中。
摘要 — 增材制造工艺是第四次工业革命时代先进工程制造工艺的关键之一。熔融沉积成型 (FDM) 和选择性激光烧结 (SLS) 是两种可用于快速成型的增材制造 (AM) 技术。本综述研究证明了熔融沉积成型和选择性激光烧结作为汽车和航空航天可互换零件制造中先进技术开发的可行设备的重要性。本文还讨论了这两台机器对制造技术进步的影响。研究结果证明了熔融沉积成型和选择性激光烧结在制造业中高效和成功生产的巨大益处,以及两者的应用。本文的目的是总结熔融沉积成型和选择性激光烧结作为先进制造技术进步的重要技术工具。研究强调了许多优点和应用,包括耐用性、易用性、更低的生产成本、更短的制造过程交付周期、易于处理复杂的型腔和几何形状、多种高性能、更低的工具成本、生产定制产品以及开发小批量生产、桥梁制造、工程模型、测试和高温应用,以便快速将产品推向市场。
摘要:通过固态合成和烧结,基于两个铜硼酸盐和Cu 3 b 2 O 6的新陶瓷材料,并将其表征为低介电介电介电常数的有希望的候选者,用于很高的频率电路。使用加热显微镜,X射线衍射测量法,扫描电子显微镜,能量分散光谱镜检查和Terahertz时间域光谱研究了陶瓷的烧结行为,构成,显微结构和介电特性。研究表明,频率范围为0.14–0.7 THz的介电介电常数为5.1-6.7,介电损失低。由于低烧结温度为900–960℃,基于铜硼酸盐的材料适用于LTCC(低温涂层陶瓷)应用。
通过膨胀法研究了 CoCrMo 粉末的烧结动力学。预合金球形粉末轴向压实并在 1300°C 至 1375°C 之间烧结。结合 EDS 分析的 SEM 图像用于评估烧结样品的微观结构。还评估了烧结样品的显微硬度。致密化在固态和半固态下进行。最终致密化以液体的出现为主,液体填充了剩余的孔隙。在烧结的中间阶段和最后阶段,主要的扩散机制是体积扩散和粘性熔剂扩散。硬度也随着温度的升高而增加。确定在钼中达到了由于液体反应而形成的金属间化合物。硬度的增加归因于致密化和共晶液体凝固产生的应力。结论:CoCrMo粉末的烧结应在1350至1375°C之间进行以获得更好的力学性能。
20. Santana, A.、Eres-Castellanos, A.、Jimenez, JA 等人。“层厚度和激光发射模式对增材制造马氏体时效钢微观结构的影响”,《材料研究与技术杂志》,第 25 卷,第 6898-6912 页 (2023 年)。DOI:10.1016/j.jmrt.2023.07.114。
抽象的陶瓷立体光刻或增值税光聚合是一个过程,允许制造具有高度复杂形状的陶瓷物体。晶格结构与高级优化拓扑工具一起使用,用于设计具有优化机械电阻的可打印轻质形状。如果这些晶格结构的机械电阻在聚合物状态下得到很好的控制,则在烧结阶段的高温下它们可以严重变形。应确定烧结过程中晶格结构的变形敏感性在概念阶段包括此方面。晶格的有限元(fem)烧结是一个有趣的解决方案,可以在数值上预测晶格的变形敏感性并确定其最小壁厚。这需要确定印刷绿色标本的烧结行为,并考虑到烧结各向异性,这涉及层之间的耐药性较弱。在这项研究中,烧结行为首先由多轴扩张法确定,并通过分析建模,然后通过FEM方法进行模拟。之后,进行了具有不同壁厚厚度的晶格的烧结模拟。这允许测试每个晶格壁厚的模拟工具可预测性,并比较其在高温下的变形灵敏度。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。