摘要 本研究获得了基于铁电磁 PbFe 1/2 Nb 1/2 O 3 粉末和铁氧体粉末(锌镍铁氧体,NiZnFeO 4 )的多铁性(铁电-铁磁)复合材料(PFN-铁氧体)。陶瓷 PFN-铁氧体复合材料由 90% 粉末 PFN 材料和 10% 粉末 NiZnFeO 4 铁氧体组成。陶瓷粉末采用传统工艺方法合成,采用粉末煅烧,而复合粉末的致密化(烧结)采用两种不同的方法进行:(1)自由烧结法(FS)和(2)放电等离子烧结(SPS)。对复合 PFN-铁氧体样品进行了热测试,包括直流电导率和介电性能。此外,还在室温下测试了复合材料样品的 XRD、SEM、EDS (能量色散谱) 和铁电性能 (磁滞回线)。在工作中,对用两种方法获得的 PFN-铁氧体复合材料样品的测量结果进行了比较。多铁性陶瓷复合材料的 X 射线检查证实了来自复合材料铁电 (PFN) 基质的强衍射峰以及由铁氧体组分引起的弱峰。同时,研究表明不存在其他不良相。这项研究的结果表明,通过两种不同的烧结技术 (自由烧结法和放电等离子烧结技术) 获得的陶瓷复合材料可以成为功能应用的有前途的材料,例如,用于磁场和电场传感器。
简介使用常规方法的陶瓷加工技术应用于最先进的陶瓷,称为智能陶瓷或智能陶瓷或电陶瓷。[1,2]考虑到所得产品的经济方面和相称的好处,本研究中排除了溶胶 - 凝胶和湿化学加工途径。在本研究中还排除了使用陶瓷成分在制造使用真空涂料单元的涂料或设备中。基于目前的信息,预计与化学途径处理相比,常规处理方法可以提供相同的性能陶瓷。当烧结温度,加热和冷却坡道,峰值温度(烧结温度),浸泡时间(保持时间)等时,这是可能的。被认为是可变参数。此外,烧结操作之前的可选钙化步骤仍然是重要的变量参数。这些变量参数构成烧结的曲线,以获得烧结的产品。也可以与烧结曲线的变量结合使用,以获得归因于钙化步骤的多个烧结曲线的相同产品。总体而言,对潜在的热和电绝缘涂层,微电子和集成电路,离散和集成设备等进行了最先进的陶瓷技术。在太空计划中的应用程序。陶瓷系统是随机定向的单个/多相多晶半导体。聚集的粉末不能有效地填充空间。这些系统基于氧化物或非氧化物或两者组成的某种杂化复合材料。轻巧的陶瓷材料不断搜索各种空间应用,作为传感器,微电器设备和电路,绝缘子,涂料,辐射屏蔽,能量转换,机械和结构支持等。利用传统的陶瓷加工方法,然后强调与钙化步骤结合烧结,以更好地执行陶瓷体。可以看到传统的陶瓷加工方法是制造积极稳定设备,防止涂料,不降解的绝缘子和结构等的经济途径。因此,智能陶瓷意味着在严重或敌对的应用领域成功使用的有效陶瓷物体而不会失败或寿命增加。陶瓷的加工/制造陶瓷加工技术涉及使用高温窑进行常规烧结的浆液和喷雾干燥的颗粒准备。本研究中未包括微波烧结和激光烧结。浆料制剂取决于原料,因为颗粒的表面电荷起着构成Zeta电位的重要作用。ZETA电位是由每个粒子从悬空键中造成的集量表面电荷产生的。电荷密度的性质决定了浆料的p h,因此与Zeta电位有关。通常,高ZETA电位表示分散良好的浆液,而低Zeta电位表示弱或强烈倾斜的浆液。此外,颗粒的聚集也是范德华表面力引起的严重问题。絮凝和聚集会导致最终产物的微观结构中的空隙。
粉末材料的混合是许多行业的关键过程,例如药物,食品,农业和冶金。在冶金炼铁过程中,铁矿石烧结物是用于生产液体熔融铁的主要原材料,是通过铁矿石,通量和燃料的混合物在烧结机中生产的。1,2)在烧结之前,铁矿石的罚款应与焦炭和石灰石混合,然后加入水以改善烧结床的渗透性。颗粒的目的是正确控制颗粒的均匀成分和合适的尺寸。3–5)因此,混合效应在肉芽过程中至关重要,该过程决定了组成和粒度分布,从而影响烧结质的质量。6–8)然而,颗粒系统的流动和混合行为已被证明是令人惊讶的复杂现象,这是容器形状的变化,
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要:这项研究的目的是确定工艺壳烧结技术中产生的钾质瓷器制成的牙齿假体的特征。使用2 K进行温度和烧结时间作为控制因素的阶乘计划,考虑了两种为数学建模提供数据的类型的舞会,从而获得了制造参数的主要影响。电阻和CERA摄影测试。该材料具有屈曲阻力,范围为95至126 MPa,回收率为2%至26%。根据最佳数据,在这种玻璃体陶瓷材料中以1.4和2.4%存在一些晶体,在两个烧结系统的理想烧结条件下,平均晶粒尺寸为9和14μm。这些发现指向涉及医疗区域和牙科陶瓷材料中添加剂制造的应用新方向。
使用纳米构造测试研究了烧结的穆特石材料的机械行为。mullite紧凑型是通过冷压缩溶胶 - 凝胶合成的mullite前体粉末并在1550°C下烧结而获得的。通过XRD(X射线衍射)和SEM-EDS(具有能量色散X射线光谱法的扫描电子显微镜)对微结构参数和相组成进行分析。在各种载荷(1000-9000 µN)下,使用了伯科维奇缩进器进行纳米凹痕测量。每次测试后,进行原位SPM(扫描探针显微镜)成像。烧结的mullite的XRD模式显示了mullite的峰(93.3%)和刚果(6.7%)。结果表明,烧结的mullite的硬度和弹性模量的平均值分别为15.55 GPA和174.37 GPA。此外,纳米引起的结果表明,由于存在粒子范围为0.2-2 µm,因此Mullite遵循Hall-Petch硬化关系。谷物较小区域的凹痕表现出更高的硬度值。测试后SPM图像揭示了在凹痕周围的堆积物,这些堆积物是在高于3000 µn的载荷下形成的。
MoSi 2 是一种导电材料,广泛应用于高温环境。本文介绍了通过陶瓷注射成型 (CIM) 生产含 MoSi 2 的电阻加热元件。烧结部件由嵌入玻璃化长石和 Al 2 O 3 基质中的 MoSi 2 颗粒组成。通过改变导电相的含量可以精确调整烧结部件的导电性。为了开发注塑原料,评估了四种粘合剂系统。相应的原料在传统模具以及增材制造的可溶模具中注塑成不同的几何形状。对于每种原料,都根据热重测量制定了脱脂和烧结程序。脱脂温度越高,MoSi 2 氧化越多,样品导电性越差。因此,烧结部件的导电性以及密度用于评估原料的适用性。最后,辉光试验证明 MoSi 2 /Al 2 O 3 /长石复合材料部件可用作加热元件,并且通过将红外测温数据与计算模拟相结合,可以可靠地获得热导率、电导率和热容量等重要的材料数据。
高速烧结是一种新型粉末床熔合增材制造技术,该技术使用红外灯提供密集的热能来烧结聚合物粉末。热能的量对于解决与颗粒聚结相关的缺陷(如孔隙率)至关重要。本研究调查了能量输入对孔隙率及其对聚酰胺 12 部件机械性能的影响。样品以不同的灯速生产,产生从低到高的不同能量输入。然后使用 X 射线计算机断层扫描技术对它们进行扫描,随后对其进行拉伸测试。发现能量输入、孔隙率和机械性能之间存在很强的相关性,其中孔隙形成的根本原因是能量输入不足。更多的能量输入导致孔隙率降低,从而导致机械性能改善。通过使用标准参数,实现的孔隙率、极限拉伸强度和伸长率分别为 0.58%、42.4 MPa 和 10.0%。进一步增加能量输入可使孔隙率降至最低 0.14%,极限抗拉强度和伸长率最高,分别为 44.4 MPa 和 13.5%。研究了孔隙形态、体积、数量密度和空间分布,发现这些与能量输入和机械性能密切相关。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
PA-12 粉末原料中存在的低分子量化合物的高分辨率质谱 (ESI-MS) 分析 PA-12 粉末原料中存在的 CHCl 3 可溶性低分子量物质的 ESI-MS 质谱如图 S2 所示。该质谱是在正离子模式下通过直接注入稀释的 CHCl 3 溶液获得的。文献中之前已详细描述了使用液相质谱法鉴定从聚酰胺材料中迁移出的十二内酰胺单体、二聚体和三聚体物质的方法。1 Irganox 1098 是长链脂肪族聚酰胺材料中常用的抗氧化剂。2