引言目前,光刻是多种半导体器件和集成电路一般生产周期中的主要工艺之一。重氮喹诺酮酚醛 (DQN) 光刻胶广泛用作亚微米和纳米光刻的掩模 [1–4]。现代电子学中形成掺杂区的主要方法之一是离子注入 (II)。该方法可以精确控制掺杂剂浓度,且具有工艺多功能性和灵活性的特点。DQN 光刻胶与紫外线、X 射线和可见辐射的相互作用已得到充分详细研究,而离子辐照引起的过程仍然知之甚少,尽管它们会显著影响所创建器件的质量 [4–6]。在聚合物的 II 期间,辐射诱导过程先前已被证明会发生在离子路径区域内及其外部 [5, 7–9]。例如,在 [5] 中发现了 DQN 抗蚀剂膜在锑离子注入层后面的辐射硬化。然而,导致 II 层后面的 DQN 抗蚀剂的物理机械性能发生变化的辐射诱导过程的机制尚未确定。对于薄膜研究,受抑全内反射 (TIR) 的 FTIR 光谱可以定性和定量地获取固体中复杂有机化合物及其混合物的成分和结构
摘要 本研究获得了基于铁电磁 PbFe 1/2 Nb 1/2 O 3 粉末和铁氧体粉末(锌镍铁氧体,NiZnFeO 4 )的多铁性(铁电-铁磁)复合材料(PFN-铁氧体)。陶瓷 PFN-铁氧体复合材料由 90% 粉末 PFN 材料和 10% 粉末 NiZnFeO 4 铁氧体组成。陶瓷粉末采用传统工艺方法合成,采用粉末煅烧,而复合粉末的致密化(烧结)采用两种不同的方法进行:(1)自由烧结法(FS)和(2)放电等离子烧结(SPS)。对复合 PFN-铁氧体样品进行了热测试,包括直流电导率和介电性能。此外,还在室温下测试了复合材料样品的 XRD、SEM、EDS (能量色散谱) 和铁电性能 (磁滞回线)。在工作中,对用两种方法获得的 PFN-铁氧体复合材料样品的测量结果进行了比较。多铁性陶瓷复合材料的 X 射线检查证实了来自复合材料铁电 (PFN) 基质的强衍射峰以及由铁氧体组分引起的弱峰。同时,研究表明不存在其他不良相。这项研究的结果表明,通过两种不同的烧结技术 (自由烧结法和放电等离子烧结技术) 获得的陶瓷复合材料可以成为功能应用的有前途的材料,例如,用于磁场和电场传感器。
火苗冲上楼顶,火光照亮了郑州西郊。许多人围观大火,看谁烧死人!然而,五月的郑州,暴徒横行,杀人如麻!火势凶猛,一滴水都浇不灭。“二七公社”的战士们只好拆墙、扔砖头。浓烟弥漫,散发着“666”杀虫剂的气味,战士们被熏得头昏脑涨,头发也被烤焦。情急之下,“二七公社”的战士们只好退到阳台上。由于楼梯被火焰吞没,战士们不得不用绳子通过窗户爬到屋顶。
虽然在各个行业已经很常见,但是印刷电子产品的生产设备仍然有改进的空间来优化制造效率。这种优化的一个重要方面,尤其是在使用金属纳米粒子油墨时,是烧结过程。烧结步骤包括将金属纳米颗粒融合在墨水中,以确保所需的成品电路电阻率低。在此任务中,加热烤箱,NIR发射器和宽带闪光灯是建立的技术,但它们的缺点限制了生产速度或效率。
随着车削、磨削、铣削、钻孔、珩磨、激光切割或电蚀等制造工艺的创新,对生产计量的需求不断增长。Mahr 的精密计量通过面向客户和应用的解决方案支持这些发展。从具有 100% 检查的自动测量解决方案到单独的统计测试,Mahr 可在生产现场提供正确的解决方案。这些解决方案提供面向预算的质量保证,创造了宝贵的竞争优势,因为质量和生产成本降低了。
随着车削、磨削、铣削、钻孔、珩磨、激光切割或电蚀等制造工艺的创新,对生产计量的需求不断增长。Mahr 的精密计量通过面向客户和应用的解决方案支持这些发展。从具有 100% 检查的自动测量解决方案到单独的统计测试,Mahr 可在生产现场提供正确的解决方案。这些解决方案提供面向预算的质量保证,创造了宝贵的竞争优势,因为质量和生产成本降低了。
制造微机电系统 (MEMS) 的两种主要方法是体微加工技术和表面微加工技术。在体微加工的情况下,可移动结构的制造是通过选择性蚀刻掉结构层下面的处理基板来完成的,而在表面微加工中,一系列薄膜沉积和对堆栈中特定层(称为牺牲层)的选择性蚀刻产生最终所需的悬浮微结构。这两种 MEMS 制造方法的关键步骤是控制释放区域,从而精确定义柔顺机械结构锚 [1],如图 1 a 和 b 所示,显示了锚的底蚀。湿法或干法蚀刻工艺都可以去除牺牲层,使用前一种方法会遇到粘滞,而后一种方法会引入污染或残留物 [2]。选择牺牲层时需要考虑的重要设计因素包括:(i) 沉积膜的均匀性和厚度控制、(ii) 沉积的难易程度、(iii) 蚀刻和沉积速率、(iv) 沉积温度以及 (v) 蚀刻选择性。光刻胶由于易于蚀刻(使用氧等离子体或有机溶剂)且不会损害大多数结构材料而被用作牺牲层 [3–6]。然而,该工艺仅限于低温
定位空蚀的各个阶段。获得的阻抗结果证明了超声波振动激励器的短期和长期影响。激励器的直接影响是系统阻抗暂时降低,关闭后该影响消失。阻抗谱形状的变化主要与反应物传质的加速有关,同时也与腐蚀产物层的“剥离”有关。第二种类型的影响与气蚀腐蚀引起的退化有关,会导致测试系统的阻抗出现不可逆转的下降。本章建议