] ] 高能推进剂(HD 1.1 级),输出比冲 > 252 s ] ] 高密度(> 1.79 g/cc)复合推进剂(HD 1.3 级),输出比冲 > 243 s ] ] 高燃速(> 40 mm/s,70 kgf/cm 2 )复合推进剂 ] ] 固体推进剂火箭发动机的压力铸造和固化技术 ] ] 分段芯轴技术,用于高体积装载药柱配置 ] ] 富含硝胺的高性能枪用推进剂(FC > 1000 J/g) ] ] TNT 当量 > 2.0 的温压高爆炸药组合物 ] ] 用于实现高密度和高精度炸药的热压和温等静压技术 ] ] 用于武器装备的炸药墨水技术 ] ]不敏感弹药 ] ] 基于爆炸的硬杀伤对抗措施
为了满足人工智能 (AI) 和高性能计算 (HPC) 等数据密集型应用的需求,需要更紧密的集成以最大限度地减少电气互连延迟和能耗。遗憾的是,随着器件规模缩小,片上互连寄生效应变得越来越重要,因此纳米级 CMOS 技术的传统器件规模缩小正在放缓。因此,人们对 3D 异构集成技术的兴趣日益浓厚,台积电的 SoIC [1] 和 AMD 的 3D V-Cache [2] 技术就是明证。3D 异构集成技术具有高密度互连、带宽和低功耗的潜力 [3],但由于材料和小尺寸,键合技术存在局限性,这可能会带来挑战。例如,μ 凸块已采用回流或热压工艺制造,然而,随着其间距缩小,凸块下金属化 (UBM) 厚度开始成为瓶颈 [4- 5]。
复合材料和混合材料在大型和结构部件中的应用和可信度已得到充分认可。推进应用包括风扇外壳和叶片。高性能合金盘正在考虑提高刚度和减轻重量,尽管成本是一个障碍。结构应用包括单元化主结构和切换到非热压罐工艺,这些工艺需要高水平的工艺内控制才能满足关键特性要求。制造过程缓慢,原材料和产品质量参差不齐;成本可能很高。人们对新型复合材料在工艺过程中和整个使用寿命中的性能了解甚少;由此产生的问题包括对工厂尺寸和特征的预测不佳,以及对整个使用寿命性能和冲击弹性的理解不完整。
通过热压粉末混合物,我们制造了三种以氧化铝基体为基础、体积百分比为 20% 的延展性金属(镍或铁)颗粒的复合材料。压痕和双扭转试验均表明,所有复合材料的韧性均高于母体基体,增幅从 22% 到 78% 不等。尽管压痕试验可以指示相对性能,但已概述了使用此方法的问题。对来自不同加工路线的氧化铝-铁样品进行的双扭转试验结果表明了微观结构的重要性。还指出,每种复合材料的最大韧性仅在裂纹长度相对较长(毫米级)时才实现。对裂纹轮廓的检查表明,颗粒-基体界面较弱,界面强度的提高将进一步提高复合材料的韧性。
先进晶圆级封装的一个重要方面是使用临时晶圆键合 (TWB) 材料和工艺,使部分处理过的晶圆即使在极高的温度和高真空条件下也能承受各种后续步骤。如果要求他们描述能够节省时间和金钱同时保持最佳性能的“理想” TWB 材料解决方案,许多制造商会要求使用可以在室温下应用和键合的材料,并且可以在热压键合 (TCB) 步骤中操作减薄晶圆时提供保护。这些材料还应具有足够的柔韧性,以支持不同的固化选项,同时保持设备功能的完整性。同时,材料应能够使用各种分离技术将减薄晶圆从载体上分离。
废钢质量预测和原材料优化在电弧炉炼钢中的重要性 废钢是电弧炉 (EAF) 工艺中最重要的输入材料,而经过精心分拣的干净废钢的供应却越来越有限。目前,全球55%的可用废钢(约8.8亿吨)是报废废钢,其成分高度不确定。预计到2050年,这一比例将上升到65%。1 在欧洲,超过60%的可用废钢中已经含有超过0.3%的不需要的元素,这些元素无法通过电弧炉工艺中的氧化作用去除。2 此类不需要的元素只能通过直接还原铁 (DRI)/热压铁块 (HBI) 或高质量且昂贵的废钢等原生铁源来稀释。因此,至关重要的是尽可能多地物理分离不需要的废钢部分,或者在现场准确了解每种废钢的确切属性。这些特性包括实际化学成分、金属产率和要装入熔炉的废钢混合物中每种废钢类型的特定能耗。只有准确了解这些废钢特性,才能制定出有理有据的、
首字母缩略词和缩写列表 BF 高炉 BOF 碱性氧气转炉 BTU 英热单位 CCUS 碳捕获、利用和储存 CE 公元 CO 2 二氧化碳 DRI 直接还原铁 EAF 电弧炉 EC 电力使用 ED 电力需求 EIA 美国能源信息署 EPA 美国环境保护署 FReSMe 从钢铁残余气体到甲醇 GHG 温室气体 GHGRP 温室气体报告计划 H 2 DRI 氢气直接还原 HBI 热压铁块 HYBRIT 氢气突破炼铁技术 IAC 工业评估中心 KDE 核密度估计 MECS 制造业能耗调查 MMBtu 百万英热单位 NAICS 北美行业分类系统 NP 非确定性多项式时间 PAUP 使用 Paup 进行系统发育分析 SIC 标准行业分类 SIDERWIN 通过电解法开发工业无 CO 2 钢铁生产新方法
垂直堆叠的三维集成电路 (3D IC) 中的芯片间电通信由芯片间微凸块实现。微凸块的电迁移可靠性对于了解基于 3D IC 的微电子系统的可靠性至关重要。本文报告了通过热压键合在两个芯片之间形成的 Cu-Sn-Cu 微凸块的电迁移可靠性的实验研究。双芯片 3D IC 组装在线键合陶瓷封装中,并在不同温度下的空气和氮气环境中进行电迁移测试。测量了微连接链和开尔文结构的故障寿命和平均故障时间 (MTTF)。结果表明,Cu-Sn 微连接的本征活化能介于 0.87 eV 和 1.02 eV 之间。基于故障分析,提出了可能的故障机制。这项研究的结果有望提高人们对 3D IC 中电迁移可靠性的根本理解,并促进基于 3D IC 的稳健可靠的微电子系统的开发。2014 Elsevier BV 保留所有权利。
除了使用有机基板封装外,为了克服尺寸限制,人们还提出了新的封装技术并将其应用于半导体产品。晶圆级封装 (WLP) 和扇出型晶圆级封装 (FOWLP) 的开发是为了通过采用晶圆工艺而不是基于层压的工艺来进一步缩小封装尺寸。对于亚微米互连,还提出了通过 Si 中介层 (TSI) 进行互连,并用于高密度 2.5D/3D 封装,其中 Cu BEOL 互连可用作再分布层 (RDL)。热压键合 (TCB) 目前用于 2.5D/3D 组装,然而,混合键合将是进一步缩小芯片连接尺寸的关键推动因素,这将在后面讨论。英飞凌于 2006 年提出了一种称为嵌入式晶圆级球栅阵列 (eWLB) 的 FOWLP [1],该技术于 2009 年转让给 STATS ChipPAC 进行批量生产。台积电开发了另一种类型的 FOWLP,称为