摘要:波兰能源部门的变化,包括对热能的需求和使用,要求采取适当措施,使可用热源多样化,增加可再生和低排放源在热能生产中的份额,增加废热回收和利用。人们越来越重视减少碳足迹、减少污染、减少原材料使用、减少废热和提高企业能源效率等问题。越来越多的问题出现了——哪些技术可以用来解决已发现的问题和需求。本出版物提出的支持这些需求的解决方案是使用移动式热能存储 (M-TES) 技术。这种技术的使用具有巨大的潜力,但也涉及在进行这种技术的设计、建造和使用时需要考虑的许多条件。本出版物的主要目的是详细描述移动式热能存储技术,并讨论与 M-TES 的设计和使用相关的各种实际方面。讨论技术时既要考虑应用,也要考虑具体领域。第一种情况是逐步讨论,从设计阶段到报废阶段。第二种情况是一次讨论一个领域,包括:技术、法律、经济和环境。在讨论技术之前,先分析该领域现有的解决方案。最新情况表明,尽管人们对该主题的兴趣日益浓厚,但该领域仍有少数解决方案已经实施并投入使用。分析表明,M-TES 是一种具有巨大潜力的解决方案。然而,有必要对其进行开发,特别是在技术和经济领域。
可再生能源的生长需要灵活,低成本和有效的电气存储系统,以平衡能源供应和需求之间的不匹配。当电力生产大于需求时,用热泵(HP)将电能(或泵送的热能储能)转换为热能;当电力需求超过生产时,Carnot电池会从两个热存储库(Rankine模式)中产生电力。经典的Carnot电池体系结构的实现不超过60%的往返电效率。但是,使用废热回收(热集成的Carnot电池)的创新体系结构能够达到比热泵的电力消耗大于电动泵的电动循环的电力生产(功率为电力比率),从而提高了技术的价值。可以证明,这种技术的优化是电力最大化和功率功率比(取决于电价等)之间的权衡。在本文中,描述了使用可逆的热泵/有机兰金循环(HP/ORC)的热整合Carnot电池原型的完整开发。它包括选择名义设计点,体系结构,组件和尺寸的选择。第一次实验活动显示,圆形电能比为72.5%,ORC效率为5%(温度提升等于49 K),HP的COP为14.4(温度提升等于8 K)。此外,分析了主组件(体积机和热交换器)的性能。这些结果非常令人鼓舞,因为可以通过优化体积机,更大规模地工作,优化控制和热绝缘,可以轻松提高性能(可能高达100%的往返电能比率)。
CB05 - 维萨格煅烧炉的可持续 CPC 生产 Les Edwards 1 、Maia Hunt 2 、Pankaj Verma 3 、Peter Weyell 4 和 Julia Koop 5 1. Rain Carbon Inc. 生产控制和技术服务副总裁,美国路易斯安那州卡温顿 2. Rain Carbon Inc. 技术服务 – 煅烧总监,美国路易斯安那州卡温顿 3. Rain CII Carbon (Vizag) Ltd. 运营高级总经理,印度维沙卡帕特南 4. Rain Carbon Germany GmbH 可持续发展和 LCA 经理,德国卡斯特罗普-劳克塞尔 5. Rain Carbon Germany GmbH 全球可持续发展总监,德国卡斯特罗普-劳克塞尔 通讯作者:les.edwards@raincarbon.com 摘要 Rain Carbon 是一家全球煅烧石油焦(“CPC”)生产商,其最大的焦炭煅烧炉位于印度维沙卡帕特南(“Vizag”)。本文旨在回顾 Vizag 的运营情况,重点介绍旨在最大限度减少对环境影响的系统。本文将介绍用于处理窑炉烟气流的设备,包括废热回收锅炉、蒸汽涡轮发电机、二氧化硫洗涤器和袋式除尘器。煅烧炉实现了二氧化硫和颗粒物的基准排放水平,并展示了现代污染控制设备所能达到的效果。二氧化硫洗涤器的常规运行效率超过 97%,副产品用于当地砖块制造。煅烧炉产生的电力有助于抵消工厂的二氧化碳排放。碳足迹分析显示了 CPC 生产对气候变化以及铝冶炼厂阳极生产和使用的潜在影响。这进一步增强了煅烧炉运行的可持续性及其对铝生命周期的积极贡献。关键词:石油焦、CPC、煅烧炉、阳极、碳足迹 1. 简介 Rain CII Carbon Vizag Limited(RCCVL)在印度安得拉邦维沙卡帕特南(“Vizag”)经营着一家年产 500 000 吨的石油焦煅烧厂。RCCVL 是 Rain Carbon Inc. 的一部分,后者是一家全球碳和化工产品生产商。该公司分为两个业务部门——碳煅烧(CC)和碳蒸馏和先进材料(CDAM)。CDAM 生产的产品种类繁多,是世界上最大的煤焦油沥青(CTP)生产商,煤焦油沥青与煅烧石油焦(CPC)结合制成用于铝生产的碳阳极。Rain Carbon 使用的煤焦油(CT)和绿色石油焦(GPC)原材料是来自其他行业的副产品,可转化为增值产品。这可以防止它们被作为废物处理或作为低品位、高碳燃料燃烧。 Vizag 是该公司最大的煅烧炉,为印度国内外的铝冶炼厂供应 CPC。两座 68 米长的回转窑构成了煅烧工艺的核心,但该工厂拥有广泛的废热回收和烟气处理系统,可利用余热发电。该系统大大减少了煅烧炉对环境的影响,并提高了操作的可持续性。二氧化硫洗涤器可去除大部分原本会从排气烟囱排放的二氧化硫,袋式除尘器可将颗粒物去除至基准低水平。CPC、CTP 和氧化铝是铝生产的重要原料,这些材料的碳足迹需要与运营冶炼厂所需电力的二氧化碳足迹一起考虑。本文的目的是报告煅烧过程和 CPC 的产品碳足迹 (PCF),以展示采用
能源效率是石油钻井平台运营的关键重点,因为该行业努力减少能源消耗并最大限度地减少对环境的影响。本评论探讨了可在海上和陆上石油平台上实施的各种节能措施,重点介绍了提高运营可持续性的关键技术和战略。石油钻井平台的电气化,用电网电力或风能或太阳能等可再生能源取代传统的柴油发电机,被认为是减少对化石燃料的依赖和降低二氧化碳排放的重要一步。此外,还强调使用热回收系统来捕获工业过程中的废热并将其转化为可用能源,从而提高整体能源效率。先进的监测和控制技术在优化能源使用方面也发挥着关键作用。通过利用实时数据收集和自动化,平台可以监控能源消耗模式,进行数据驱动的调整,并实施预测性维护系统以减少能源浪费。本评论进一步研究了节能设备的使用,包括先进的电机、泵和压缩机,以及将太阳能和风能等可再生能源整合到石油钻井平台运营中的潜力。报告讨论了高昂的前期成本、技术限制和恶劣的环境条件等主要挑战,以及政府激励措施、行业合作和技术创新等潜在解决方案。研究结果表明,实施这些节能措施不仅可以减少石油平台的碳足迹,还可以大幅节省成本,符合全球可持续发展目标。报告最后强调,需要持续投资和政策支持,以推动石油和天然气行业进一步提高能源效率。
在俄勒冈州Tualatin的联合协会(UA)本地290培训设施的现场现场发生的可选活动。可以25美元的价格添加到您的注册中;仅限56名参与者。3月4日,星期二 - 热水论坛7:00 AM - 7:00 PM注册7:30 - 8:20 AM早餐8:20 - 8:50 AM欢迎并介绍9:00 - 10:30 AM并发会议1A。如何获得热泵热水器的热量,许多建筑物未设计,修改和用于使用空气源热泵热水器(HPWH)的最佳服务。本届会议介绍了如何在安装故障时确保最佳性能,尤其是空气供应不足以进行热交换和处理冷排放空气。主持人:Harvey Sachs,Aceee,确保在不理想的空间中HPWH效率Sam Larson,Larson Energy Research Research Air-Sour-Sour-Source HPWH:温暖的进气空气来自哪里?冷排气空气在哪里?Gary Klein,Gary Klein,在80座建筑物和生长中的中央水平排水热回收:设计和测量的性能Gerald Van Decker,可再生能源公司1B。商业食品服务热泵热水器在住宅应用中是一种已久经考验的技术,但仅在有限的商业食品服务中应用。这为不熟悉HPWH设计校长,规范和性能以及环境健康(EH)专业人员的运营商和设计师构成了挑战,他们负责批准HPWHS。本届会议分享了最新的实验室和现场研究信息HPWH性能以及实用的设计建议和当前的HPWH政策。
相变材料(PCM)通过提供热量存储,管理和调节以及废热回收来提供有希望的解决方案。这些材料可以弥合能源需求和生产之间的差距,尤其是在太阳系中。PCM在被动建筑温度控制,加热和冷却系统,光伏(PV/PVT)系统中具有巨大的潜在应用,甚至清洁烹饪技术。但是,必须克服诸如长期稳定性,低导热率,泄漏以及对可持续材料的需求之类的挑战,以充分实现其收益。形状稳定的PCM(SS-PCM),以维持形状稳定性,并使用诸如碳和二氧化硅骨架,金属框架和聚合物等多孔结构来防止泄漏问题。可持续发展目标目标促进了对基于生物的材料和农业残留物(如天然纤维,木质纤维素或生物炭)的兴趣,其天然多孔结构非常适合准备SS-PCM。使用废物自然纤维或木质纤维素材料作为PCM支持提供了多种好处:与焚化相比,大幅降低成本,废物瓦解和减少的碳排放(与SDGS 3、7、11-13和15对齐)。但是,由于种类繁多的材料,该研究领域仍在开发中,需要进一步探索。在这种情况下,该项目着重于将农业废物的选择和可持续转化为一种新型的,完全基于生物的复合形状稳定相变材料(SS-PCM),评估对被动能源应用和生命周期分析(LCA)。这个创新的项目通过利用可用的资源来应对能源挑战:农业废物及其转换为高价值SS-PCM,从而促进节能和提高清洁能源应用的效率。该项目的创新潜力可以直接促进两个可持续发展目标:气候行动和负担得起的清洁能源,而拟议的项目与负责任的创新原则保持一致,以在道德和负责任的情况下对社会产生积极影响。参考:
摘要:能源系统向 100% 可再生能源 (RES) 转型的趋势正在开始显现其影响,并越来越受到人们的接受。在这种情况下,大型光伏和风力发电厂将发挥主导作用。同时,随着电力运输、热泵和电转气技术的日益普及,能源消费的电气化预计将进一步发展。RES 的不可完全预测性是其众所周知的缺点,考虑到能源转型,它将需要使用储能技术,特别是大规模的电能到化学转化和化学能到电能的再转化。尽管如此,在这种情景下,关于中小型 CCHP 技术的潜在作用的分析文献还很少。因此,本文的目的是探讨在上述情景下,由废热驱动的热电联产 (CHP) 和/或冷热电联产 (CCHP) 技术可能发挥的作用。首先,本文对可能由低温余热源供电的中小型热电联产技术进行了回顾。然后,对拉彭兰塔理工大学研究人员研究的 100% 可再生能源情景进行了回顾(通过所谓的“LUT 模型”),以确定可以为中小型热电联产技术供电的潜在低温余热源。其次,通过从双方收集的交叉数据,介绍了上述余热源和所回顾的热电联产技术之间的一些可能的相互作用。结果表明,最适合所选热电联产技术的余热源是与燃气轮机(热回收蒸汽发生器)、蒸汽轮机和内燃机相关的余热源。还进行了初步的经济分析,结果表明,在电力和热力生产方面,所考虑的热电联产技术每单位安装千瓦的潜在年节约额分别可达 255.00 欧元和 207.00 欧元。最后,讨论了 100% 可再生能源情景中热电联产/冷电联产集成的碳足迹前景。
电动汽车已成为国家战略重点,对未来交通运输、工业发展、能源安全、空气质量改善等都具有重要意义。发展高效、低碳的热管理技术已成为打造更安全、舒适、节能、环保的电动汽车的重要方面之一。由于冬季发动机热回收功能缺失,电池、电机、电控设备对温度的敏感性较高,先进的热管理技术对电动汽车的续航里程、安全性、动力性、寿命和可靠性的影响越来越重要。目前,电动汽车热管理技术的发展主要集中在高效电池热管理、低碳热系统技术、集成节能热系统和智能控制技术等方面,旨在打造功能集成、结构模块化、控制智能化的绿色高效系统。在此,我要向中国科学院何雅玲院士表示诚挚的感谢,感谢她提供平台,邀请我们组织汽车热管理专题讨论。本专题主要介绍该领域的最新科技进展。我们很高兴呈现了六篇高质量的文章,涵盖了低碳热系统技术、高效系统关键部件、先进热交换技术以及高效电池热管理技术等主题。这些论文突出了与制冷剂替代品相关的最值得关注的系统和部件技术,以及与电池热管理相关的最新技术。本专题的工作为汽车热管理前沿技术的未来发展提供了宝贵的见解和方向。我衷心感谢所有作者分享他们的研究和发现,并感谢他们为本专题付出的时间和精力。我希望它能帮助读者更深入地了解电动汽车热管理,并激励更多的研究人员探索这一重要领域。随着学术界的日益关注,我们希望加速汽车热管理技术的发展,解决电动汽车当前面临的技术挑战,促进其快速而强劲的增长。最后,我要向审稿人、编辑和出版制作团队表示深深的谢意,感谢他们的辛勤工作、坚定不移的支持、奉献和热情。没有他们的努力,本专题的成果和成功就不可能实现。
哈佛 SEC 可持续发展之旅关键谈话要点 1. Behnisch Architekten 是一家知名的全球建筑公司,以设计可持续的创新型建筑而闻名,是 SEC 的建筑师。SEC 占地 544,000 平方英尺,包括 70,000 平方英尺的公共绿地。 2. 哈佛大学拥有全面的可持续发展愿景和一系列以研究和科学为基础的优先事项,我们的目标是与教师、学生、员工、校友和外部合作伙伴合作,将哈佛校园用作试验平台,试行和证明气候和可持续发展的解决方案。在我们的建筑环境中,我们致力于增进健康、应对气候变化和大规模改善公平性。 3. SEC 是一个试验平台,被称为最健康、最节能和最具气候适应力的实验室建筑之一。 • 获得 LEED 白金认证(弹性、雨水保留、节能和室内空气质量)。全球第一座获得严格、创新的材料、公平、美观生活建筑挑战认证的研究大楼和最大的建筑。 4. 该项目及其所连接的新区域能源系统是根据我们的气候目标建造的,即到 2026 年实现零化石燃料,到 2050 年实现无化石燃料。 5. SEC 的设计和建造在发出明确的市场信号方面发挥了特别重要的作用,通过成分标签透明化,指定需要去除的有害化学物质(如 PFAS、化学阻燃剂、抗菌剂),优化材料以有利于健康,特别是在产生有害化学物质和制造产品的上游。 气候:主要特点 高性能围护结构;高效气候、自然通风、实验室气流减少和热回收系统;低能耗水暖、辐射终端系统;新型智能程序分区。 为 SEC 供电的区域能源设施使用低温、热水、高效的热电联产供暖和制冷系统,旨在具有弹性和灵活性,可以过渡到 FFF。 DEF 使用一个容量为 130 万加仑的储水箱,在电力价格较低、污染较少的非高峰时段生产和储存冷冻水。储水箱就像一个电池,可以节省能源,以便在高峰时段使用,从而减轻电网的负担。
G 部分:节能和替代能源抵免 44. 太阳能抵免 a. 基本太阳能抵免 南卡罗来纳州法典 §12-6-3587 允许纳税人抵免相当于购买和安装太阳能系统所产生成本的 25% 的所得税,包括小型水力发电系统或用于加热水、空间供暖、空气冷却、节能日光照明、热回收、节能需求响应或在纳税人位于南卡罗来纳州的设施(或住宅)内发电的“地热机械和设备”。在系统安装完成之前不能申请抵免。抵免金额不得超过每个设施 3,500 美元或纳税人纳税年度纳税义务的 50%(以较低者为准)。每个设施超过 3,500 美元的抵免可以结转 10 年。可在 TC-38 表“太阳能抵免”中申请抵免。 “系统”包括所有控制装置、水箱、泵、热交换器以及其他直接专用于太阳能系统的设备。但不包括任何土地或建筑结构元素,如墙壁、屋顶或通常包含在结构中的其他设备。 要获得抵免资格,系统必须通过非营利性太阳能评级和认证公司或州能源办公室认可的类似实体的性能认证。 该法规还定义了“地热机械和设备”。 注意:购买和安装“地热机械和设备”可获得的抵免有效期至 2032 年 1 月 1 日。 b. 太阳能设备抵免 – 合格场地 – 已过期抵免 南卡罗来纳州法典 §12-6-3775 规定,所得税抵免额相当于太阳能财产成本(包括安装成本)的 25%。 “太阳能资产”是指任何标称容量至少为 1,900 千瓦的非住宅太阳能设备,该设备使用太阳辐射替代传统能源,用于水加热、主动空间加热和冷却、被动加热、采光、发电、蒸馏、海水淡化、解毒或生产工业或商业工艺热。某些相关设备也包括在此术语中。南卡罗来纳州法典 §12-6-3775(A) 和 (B)。为了获得抵免资格,纳税人必须在南卡罗来纳州建造、购买或租赁并投入使用太阳能资产。此外,该资产必须位于法规规定的合格地点。如果纳税人租赁该资产,则必须满足某些额外要求。南卡罗来纳州法典 §12-6-3775(B) 和 (E)。