钢是一种全球使用的结构材料,也是推进社会和经济体的主要因素。高级高强度钢(AHSS)是一类高性能钢,这对于汽车行业尤为重要,因为燃料效率的需求不断提高,降低排放和被动安全性。研究主题“高级高强度钢的新发展和挑战”旨在收集有关AHSS设计,处理和表征的最先进的研究。本期包括七个经过同行评审的研究文章,涵盖了多种钢类类型,例如中型锰(MN)钢,孪生诱导的可塑性(TIP)钢,变换诱导的可塑性(Trip)钢,淬火和分配的(Q&P)(Q&P)钢(Q&P)钢,低碳铁矿钢和压榨钢。在这些研究中,对热处理途径对AHS的微观结构和机械性能的影响进行了广泛研究,并提出了一些新的加工途径。pan和他通过多种热处理(包括中批评退火(IA),淬火和分区(Q&P)以及IA和Q&P的组合,他通过多种热处理获得了铁氧体,奥氏体和/或马氏体的三种微观结合组合。在这些微观结构之间比较了体积分数的变化和保留奥氏体的稳定性的变化。通过调整加工途径来获得高强度和高伸长率的不同组合,说明了如何调整培养基钢的拉伸性能,以促进其适用于广泛的汽车需求。Glover等。 Park等。Glover等。Park等。Park等。提出的新型加工途径以改善中型MN钢的机械性能。与单个中批评性退火处理相比,证明在中型MN钢两倍浸泡中添加回火或适应性热处理。这项工作重点介绍了修改中MN钢的机械性能的其他机会。众所周知,谷物的修复可以提高钢的强度。严重的塑性变形(SPD)过程通常用于创建平均晶粒尺寸小于1μm的UFG微结构。但是,在扩大大规模钢生产的SPD方法方面存在很大的困难。进行了一种新型的循环热处理,以在2 MN-0.1 C钢中产生UFG铁氧体。事实证明,环状热处理可有效降低奥斯丁岩晶粒尺寸至11μm。平均晶粒尺寸为4.5μm,几乎随机纹理的菌丝铁矿结构仅通过循环热处理成功获得,并提供了高强度和较大的拉伸延展性。
工业热处理 PG 理论 高级物理冶金学 PG 理论 固态相变 PG 理论 冶金热力学实验室 PG 实验室 材料测试实验室 PG 实验室 热处理实验室 UG 实验室技能项目 UG 项目小项目 UG 项目大项目 UG 项目迷你项目 PG 项目 论文阶段 - I PG 项目 论文阶段 - II PG 项目
a UNIDEMI,机械与工业工程系,里斯本新大学科学技术学院,Caparica 2829-516,葡萄牙 b 智能系统联合实验室,LASI,吉马良斯 4800-058,葡萄牙 c 里约热内卢联邦大学(UFRJ)冶金与材料工程项目,CEP,里约热内卢 RJ 21941-972,巴西 d Helmholtz-Zentrum Hereon,材料物理研究所,Max-Planck-Str. 1,Geesthacht 21502,德国和南京理工大学材料科学与工程学院 Herbert Gleiter 纳米科学研究所,南京 210094,中国 f Institut Pprime,UPR CNRS 3346,材料物理和力学系,ISAE-ENSMA,1 Avenue Cl´ement Ader,BP 40109,Chasseneuil,Futuroscope 86 961,法国 g CENIMAT|i3N,里斯本新大学科学与技术学院材料科学系,卡帕里卡,葡萄牙
病例钢钢通常用于齿轮和轴承应用。这类材料的低碳含量可为不同生产技术(如形成,锻造和焊接)提供出色的加工性。但是,低碳含量限制了这组材料的可靠性。一种特殊的热处理被称为病例硬化,对于提高这些材料的可耐用性是必要的。这种热处理是化石或硝化的,然后进行了亚分化的强化操作以改善表面硬度。渗碳的局限性是该过程耗时,薄壁的零件可能会变形[1]。长时间的时间使这个过程不吸引小批量尺寸的织物。此外,发现仅马氏体结构在材料的耐磨性方面不利[2]。说到耐磨性,仅产品的磨损可能导致多达全国国内生产总值的4%的经济成本[3]。低合金钢的病例硬化主要导致马氏体微观结构,因为几乎所有碳都在马氏体内捕获[4]。调节这些产品通常是为了改善工件的延展性。关于耐磨性,诸如碳化物之类的次级阶段比单纯的马氏体微观结构更优选。为了形成碳化物(VC)或碳化钨(WC)等碳化物,需要超过500℃的高温温度[5]。但是,这些形成碳化物的元素通常不存在或仅在病例钢钢内以较小的比率存在。它们的缺席阻碍了次级碳化物的降水的影响,从而限制了最终部分的耐磨性。因此,需要替代仅碳增强的替代方案,以进一步改善病例钢钢的部分。基于激光的定向能量沉积(DED-LB/M)Pro-VIDESA有望altertantiveto病例硬化,用于调整产品的表面硬度[6]。DED-LB/M中的灵活处理允许生成三维结构,修复磨损的表面或沉积耐磨性覆盖层到高度载荷的表面上。由于可以同时使用DED-LB/m同时使用多种粉末材料,因此可以局部调整最终工件的化学成分[7]。这种高灵活性打开了在需要的情况下在具有量身定制特性的自由形式表面上涂上涂料的可能性。应用的一个潜在领域是将渗碳产品代替仅以小批量制造的大零件。这样做,可以进行长时间的固定时间。DED-LB/M维修应用程序的巨大潜力也使当地磨损的配件进行翻新。使用DED-LB/M进行维修应用,需要产生具有与先前碳液材料相似的材料硬度的硬表面。知道只有固定钢的马氏体硬化产品的前提不利,可以添加进一步的合金元素,以提高关键特性,例如耐磨性或硬度。结合了例如,钨可以帮助改善固醇溶液加强以及高温耐药性的材料的性质[8]。
对于大多数应用,INCONEL 718 合金被指定为:固溶退火和沉淀硬化(沉淀硬化、时效硬化和沉淀热处理是同义词)。合金 718 通过将次生相(例如伽马素和伽马双素)沉淀到金属基体中而硬化。这些镍(铝、钛、铌)相的沉淀是通过在 1100 至 1500°F 的温度范围内进行热处理引起的。为了使这种冶金反应正常进行,时效成分(铝、钛、铌)必须溶解(溶解在基体中);如果它们以其他相的形式沉淀或以其他形式组合,则它们将无法正确沉淀,并且无法实现合金的全部强度。要执行此功能,必须首先对材料进行固溶热处理(固溶退火是同义词)。INCONEL 718 合金通常采用两种热处理: •固溶退火温度为 1700-1850°F,然后快速冷却(通常在水中),再加上在 1325°F 下沉淀硬化 8 小时,炉冷至 1150°F,在 1150°F 下保持,总时效时间为 18 小时,然后空气冷却。•固溶退火温度为 1900-1950°F,然后快速冷却(通常在水中),再加上在 1400°F 下沉淀硬化 10 小时,炉冷至 1200°F,在 1200°F 下保持,总时效时间为 20 小时,然后空气冷却。如果材料需要进行机械加工、成型或焊接,则通常在轧机退火或应力消除状态下购买。然后在材料最具延展性的状态下进行制造。制造后,可以根据适用规范的要求进行热处理。
抽象的Maraging钢是一种低碳钢,以其热处理后的超高强度而闻名。与添加剂制造(AM)结合使用,Maraging Steel的特性表明有可能实现复杂的几何形状,并提高了弹道保护的性能与重量比率。本研究研究了由粉末床融合制造的AM Maraging钢整体板和轮廓面板的弹道性能。在截然不同的状态和热处理后,Maraging钢的机械性能通过与构建方向相对于三个不同方向的准静态和动态测试揭示。还进行了冶金研究,以研究测试前后材料的微观结构。通过向不同的目标构型发射7.62 mm APM2子弹,在弹道范围内披露了Maraging钢样品的弹道穿孔电阻。获得了弹道极限曲线和速度,表明最厚的热处理钢板具有特别良好的弹道保护潜力。在所有测试中均打破了装甲穿刺子弹的硬芯,并在用热处理靶标进行测试中偶尔会破碎。然而,由于材料的严重脆性,靶标在某些情况下显示出明显的碎片化,最显着的剖面图。
材料选择:为特定的工程应用选择材料 相图分析:解释材料行为的相图。 微观结构分析:用显微镜检查金属微观结构。 热处理效果:研究热处理对钢的影响。 材料性能测试:比较各种金属的机械性能。 疲劳测试:测试金属的疲劳耐久性。 绿色材料:制造业使用的绿色材料研究报告 智能材料:研究和展示智能材料。
奇瓦瓦州热处理专家安装配备通用快速冷却系统的 HIP 设备,投资未来 瑞典韦斯特罗斯,2020 年 1 月 16 日——HT-MX 总部位于墨西哥奇瓦瓦,专门为航空航天和汽车市场提供热处理和冶金实验室服务。当该公司决定扩大其已经广泛的服务范围并扩大其航空航天业务时,该公司在 Quintus Technologies 找到了理想的合作伙伴。热等静压 (HIP) 长期以来一直是全球制造商消除孔隙和去除材料缺陷的首选方法。然而,在墨西哥,直到现在还没有企业能够提供 HIP 服务。 成熟企业的新技术 这家快速发展的热处理专家已成为墨西哥第一家投资 HIP 系统的公司。在对可用系统进行全面评估后,HT-MX 决定与 Quintus Technologies 合作,选择了 QIH 48 M URC® 型压机。URC 是 Quintus 专有的均匀快速冷却功能,将 HIP 和热处理结合在一个工艺中。 HT-MX 首席执行官 Humberto Ramos Fernandez 表示:“当我们开始使用未知技术的新项目时,重要的是尽量减少任何可察觉的风险。而拥有世界领先的设备供应商无疑有助于实现这一点。对于我们这样的运营,我们寻求的是质量、