a 威斯康星大学麦迪逊分校机械工程系,美国威斯康星州麦迪逊 53706 - 1572 b 康涅狄格大学机械工程系,美国康涅狄格州斯托尔斯 06269 - 3139 c 卫斯理大学物理系,美国康涅狄格州米德尔顿 06459
完整作者名单: Muthaiah, Rajmohan;俄克拉荷马大学,航空航天与机械工程学院 Annam, Roshan Sameer;俄克拉荷马大学,航空航天与机械工程学院 Tarannum, Fatema;俄克拉荷马大学,航空航天与机械工程学院 Gupta, Ashish;俄克拉荷马州立大学 Garg, Jivtesh;俄克拉荷马大学,航空航天与机械工程学院 Arafin, Shamsul;俄亥俄州立大学,电气与计算机工程学院
完整作者名单:袁鲲鹏;大连理工大学;张晓亮;大连理工大学能源与动力工程学院;常政;大连理工大学能源与动力工程学院;唐大伟;大连理工大学能源与动力工程学院;胡明;南卡罗来纳大学机械工程学院
单向取向结构在增强大孔材料性能方面表现出显著的效率,但难以以省时省钱的方式构建。本文利用一种简便的方法来制造取向大孔陶瓷材料,即采用天然石墨薄片作为易散性材料,并利用累积轧制技术优先使薄片在陶瓷基体内排列。在大孔氧化锆陶瓷中形成了分布均匀的片状至近椭圆形孔隙,通过控制石墨薄片的添加量可以调节其孔隙率和微观结构特征。所得材料表现出良好的性能组合,抗压强度高达 1.5 GPa 以上,超过了大多数其他具有类似孔隙率的多孔氧化锆陶瓷,同时热导率低至 0.92 – 1.85 Wm − 1 ⋅ K − 1 。这项研究为开发具有增强性能的新型定向大孔材料提供了一种简单的方法,并且可以通过轻松的大规模生产来促进其应用。
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
最近发现的 Zintl 化合物 Yb 10 MnSb 9 是一种热电材料,在成分空间上与 Yb 14 MnSb 11 和 Yb 21 Mn 4 Sb 18 等高性能热电材料非常接近。我们在此测量并报告 Yb 10 MnSb 9 在高达 825K 下的电子和热传输数据。由于晶体结构复杂,这种材料具有超低的热导率。超低的晶格热导率加上比其他 Yb-Mn-Sb 化合物更高的塞贝克系数,导致在 825K 时具有约 0.34 的中等 zT,并且可能通过材料优化在更高的值处达到峰值。我们近似估计带隙约为 0.4 eV,并预计 zT 能够在 725K 时达到高达 0.33 的值(与该温度下的 Yb 14 MnSb 11 相当)使用热电品质因数分析。通过晶界工程提高品质因数 B,该 zT 有可能达到更高的值。这里我们为未来研究改进热电性能提供了建议。这项工作是首次报告这种 Yb 10 MnSb 9 化合物的热导率、带隙和 zT,我们通过与领先的 Yb 14 MnSb 11 材料的比较讨论了这种材料对未来热电研究的影响。
真空中的热接触导率 Rob van Gils 1、Ruud Olieslagers 1、Mo Mirsadeghi 1、Joris Oosterhuis 1 1 飞利浦工程解决方案、机电一体化、热能、流动和控制 Rob.van.Gils@philips.com;Joris.Oosterhuis@philips.com;摘要 本研究调查了不同种类和材料的金属表面之间的宏观热接触导率。分析的目的是找到表面之间的有效传热系数,以帮助对此类接触进行热建模。创建了一个装置,其中两个金属样品可以在 0.2 – 25 MPa 的接触压力下以 50 mm 2 的接触尺寸压在一起。虽然结果与文献有较好的重合度,但在某些测试设置下,与一些常用模型(如 Yovanovic [1,2] 和 Garimella [5] 的模型)的匹配度也较差(偏差可能高达 600%)。这表明,需要正确理解这些模型的有效范围以及真空接触传热现象,而不是应用现有的模型。此外,在某些情况下,观察到高达 100% 的重新接触不可重复性(与文献来源一致),在分析具有主要热接触阻的模型时应考虑到这一点。热接触导率、测量、真空、建模、