聚合物的多面应用往往受到其热导率的限制。因此,了解聚合物中的热传输机制至关重要。在这里,我们利用分子层沉积来生长三种混合金属锥(即 alucone、zincone 和 tincone)薄膜,并研究它们的热和声学性能。混合聚合物薄膜的热导率范围为 0.43 至 1.14 W m − 1 K − 1 。利用动力学理论,我们将热导率差异的起源追溯到声速变化,这是由薄膜内的结构无序决定的。改变无序性对体积热容量和振动寿命的影响可以忽略不计。我们的研究结果为提高有机、混合和无机聚合物薄膜的热导率提供了方法。
各种应用(例如太空应用)对高功率密度、高效率电子设备的需求日益增加。高功率密度要求在封装层面进行有效的热管理,以确保工作温度保持在安全的工作范围内,避免设备早期故障。芯片粘接(芯片和法兰之间的粘合层)一直是热瓶颈,依赖于导热率相对较低的共晶焊料。正在开发先进的高导热率芯片粘接材料,包括烧结银和银环氧树脂,以解决这一问题。然而,这些新材料的热导率通常以其块体形式进行评估;体积热导率可能无法代表实际应用中较低的实际“有效”热导率,这也受到界面和空隙的影响。在本文中,频域热反射已调整为在低频下运行,具有深度灵敏度,可测量夹在芯片和法兰之间的芯片粘接层的热导率。
1 洛林大学,CNRS,LEMTA,F-54000 南锡,法国 2 圣戈班巴黎研究中心,39 quai Lucien Lefranc,F-93303 奥贝维利埃,法国 3 巴黎高等矿业学院,92 Rue Sergent Blandan,54042 南锡,法国 摘要 本文介绍了一种简单的热表征方法,记为 CFM,用于测量高温(即高达 600°C)下绝缘材料的表观热导率。CFM 方法是一种稳态相对测量方法,需要校准。实验装置的校准是使用已知热导率的硅酸钙板进行的。在 100 至 600°C 之间对低密度可压缩纤维毡和高密度硅酸钙板进行了热导率测量。低密度纤维毡的保护热板 (GHP) 法和高密度硅酸钙板的平行热线 (PHW) 法所得值与实验值高度一致。通过测量不同表观密度的低密度纤维毡的表观热导率,结合简单的传导-辐射模型,可以估算出平均特定消光系数,该值与透射/反射测量得出的值高度一致。
图 1:具有不同平均粒子/晶粒尺寸的 SiGe 合金和 Mg 3 Sb 2 样品的晶格热导率(按照传统方法计算)κ L ( κ total − LσT ) 与加权迁移率 µ W 12,14(推导方法见 SI)的关系。 (a)n 型(P 掺杂)和 p 型(B 掺杂)SiGe 在室温下均呈现正相关性。 (b)对于高温(573K)下的 Mg 3 Sb 2,电子不会被晶界明显散射,除最小晶粒尺寸样品外,加权迁移率相同。 相反,在低温(323K)下,随着晶粒尺寸的减小,µ W 显著降低,因此低 µ W 是晶粒边界电阻的良好指标。 κ L 随 µ W 降低而增加的趋势表明即使没有测量晶粒尺寸也存在晶界效应。
a 威斯康星大学麦迪逊分校机械工程系,美国威斯康星州麦迪逊 53706 - 1572 b 康涅狄格大学机械工程系,美国康涅狄格州斯托尔斯 06269 - 3139 c 卫斯理大学物理系,美国康涅狄格州米德尔顿 06459
摘要:氮化铝 (AlN) 是少数具有优异导热性的电绝缘材料之一,但高质量薄膜通常需要极高的沉积温度 (>1000°C)。对于密集或高功率集成电路中的热管理应用,重要的是在低温 (<500°C) 下沉积散热器,而不会影响底层电子设备。在这里,我们展示了通过低温 (<100°C) 溅射获得的 100 nm 至 1.7 μ m 厚的 AlN 薄膜,将其热性能与其晶粒尺寸和界面质量相关联,我们通过 X 射线衍射、透射 X 射线显微镜以及拉曼和俄歇光谱对其进行了分析。通过反应性 N 2 的分压控制沉积条件,我们实现了 ∼ 600 nm 薄膜热导率 ( ∼ 36 − 104 W m − 1 K − 1 ) 的 ∼ 3 × 变化,上限范围代表室温下此类薄膜厚度的最高值之一,尤其是在低于 100°C 的沉积温度下。还可以从热导率测量中估算出缺陷密度,从而深入了解 AlN 的热工程,可针对特定应用的散热或热限制进行优化。关键词:热导率、氮化铝、生产线后端、热传输、溅射沉积、低温、电力电子
摘要:热管理是电子组件缩减尺寸以优化其性能的关键问题。这些设备结合了越来越多的纳米结构材料,例如薄膜或纳米线,需要适合表征纳米级热性能的测量技术,例如扫描热显微镜(STHM)。在活动模式下,热热探针扫描样品表面,其电阻R随着探针和样品之间的热传递的变化而变化。本文提出了使用STHM技术对热导率进行定量和可追溯测量而开发的测量和校准方案,前提是校准和测量之间的热传递条件是相同的,即本研究的扩散热方案。在宏观上测得的K的校准样品用于建立将R与K的变化连接的校准曲线。对校准参数和估计的k值详细介绍了对不确定性(影响因素和计算技术)的完整评估。结果分析表明,使用STHM的热导率的定量测量(不确定性值为10%)仅限于导热率较低的材料(K <10 W m -1 K -1)。
设计及其应用,2,4 其中仅需最少的时间和资源即可快速评估 k 是关键。有很多可用的方法来评估 k 。基于第一性原理的非谐晶格动力学 (ALD) 是过去几年中广泛采用的方法。5 然而,使用大型超胞进行的太多力计算虽然可以部分重建,但非常耗时耗资源,6 这限制了其在高通量计算预测 k 中的实际应用。或者,使用经验模型评估 k 是一种更有效、更可行(计算成本更低)的方法,例如 Debye-Callaway 模型、7-9 Slack 模型、10 等。特别是,Slack 模型已广泛应用于评估许多材料的 k,11-13 显示出快速预测 k 和洞察热传输的潜在能力。14-16
倒装芯片式集成电路的热管理通常依赖于通过陶瓷封装和高铅焊料栅格阵列引线进入印刷线路板的热传导作为散热的主要途径。这种封装配置的热分析需要准确表征有时几何形状复杂的封装到电路板的接口。鉴于六西格玛柱栅阵列 (CGA) 互连的独特结构,使用详细的有限元子模型从数字上推导出有效热导率,并与传统 CGA 互连进行比较。一旦获得有效热导率值,整个互连层就可以表示为虚拟的长方体层,以纳入更传统的“闭式”热阻计算。这种方法为封装设计师提供了一种快速而可靠的方法来评估初始热设计研究权衡。