纳米尺度对热传输的影响有望在先进半导体架构的散热中发挥重要作用,并提高新型热电材料的效率。热传输测量通常在宏观尺度上进行,并给出多材料结构(包括各种界面和材料)的整体响应。纳米级材料和界面中热传输的原子计算机模拟有助于分析实验,了解尺寸和时间尺度的限制效应,并评估相关的宏观模型。1 到目前为止,通过分子动力学 (MD) 模拟对原子尺度上的热传输进行建模主要遵循两种方法。第一种方法称为平衡 MD,2 基于在给定温度下平衡的系统中热流波动的量化。最终使用 Green-Kubo 或爱因斯坦涨落关系来提取块体材料的热导率。第二种方法称为非平衡 MD 或直接法 3,其基础是在热源和热沉之间建立稳态热流,并从温度梯度的斜率或不连续性中分别提取热体积电导率或界面电导率。在目前的研究中,我们开发了一种不同的方法,称为 AEMD,即“接近平衡” MD。通过划定一个与其他部分温度不同的加热部分,最初将系统设置为非平衡状态。然后监测接近平衡的情况,即两部分之间的温差随时间的变化。可以证明,对于大多数实际关注情况,温度衰减呈指数增长。通常在几十分之一到几百皮秒内达到平衡,因此,与平衡MD中自相关函数的计算和非平衡MD中稳态热流的建立相比,计算成本大大降低。此外,AEMD方法基于平均
b' 在本研究中,我们报告了超快速瞬态热带 (THS) 技术用于测量氮化铝 (AlN) 薄膜各向异性热导率的实现情况。AlN 薄膜是通过在硅基板上制备的氧化硅 (SiO 2 ) 薄膜上在低温 (> 250 C) 下生长的反应性直流磁控溅射制备的。使用产生超短电脉冲\xc2\xad ses 的实验装置对热导率进行精确测量,并在纳秒和微秒时间尺度上电测量随后的温度升高。在 AlN 加工之前,将电脉冲施加在 SiO 2 上图案化的金属化条带内,并在 [0.1 \xe2\x80\x93 10 \xce\xbc s] 范围内选择的时间段内分析温度升高。当厚度从 1 \xce\xbc m 增加到 2 \xce\xbc m 时,AlN 横向平面(平面内)热导率分别从 60 增加到 90 W m 1 K 1(33 \xe2\x80\x93 44 W m 1 K 1)。这清楚地表明了 AlN 薄膜热导率的各向异性。此外,AlN 的体积热容量估计为 ~2.5 10 6 JK 1 m 3 。'
1 洛林大学,CNRS,LEMTA,F-54000 南锡,法国 2 圣戈班巴黎研究中心,39 quai Lucien Lefranc,F-93303 奥贝维利埃,法国 3 巴黎高等矿业学院,92 Rue Sergent Blandan,54042 南锡,法国 摘要 本文介绍了一种简单的热表征方法,记为 CFM,用于测量高温(即高达 600°C)下绝缘材料的表观热导率。CFM 方法是一种稳态相对测量方法,需要校准。实验装置的校准是使用已知热导率的硅酸钙板进行的。在 100 至 600°C 之间对低密度可压缩纤维毡和高密度硅酸钙板进行了热导率测量。低密度纤维毡的保护热板 (GHP) 法和高密度硅酸钙板的平行热线 (PHW) 法所得值与实验值高度一致。通过测量不同表观密度的低密度纤维毡的表观热导率,结合简单的传导-辐射模型,可以估算出平均特定消光系数,该值与透射/反射测量得出的值高度一致。
单条聚合物链的热导率是合理设计聚合物基热管理材料的重要因素,而链的应变状态对其影响很大。在本研究中,利用非平衡分子动力学模拟,计算了代表典型聚合物链的单条聚乙烯链的热导率与应变的关系。为了研究不同共价键模型的影响,分别比较了反应性和非反应性势模型(AIREBO 和 NERD 势)的结果。当应变 ε 小到 ε < − 0.03 时,即在轻微压缩下,无论采用哪种势模型,热导率值都相似,且随应变的增加而增加。然而,当应变较大(最高 ε < 0.15)时,这两种势模型表现出截然不同的行为:由非反应性势计算的热导率随应变的增加而不断增长,而由反应性势模型计算的热导率则达到饱和。内部应力和振动态密度的分析表明,饱和行为是由于 C-C 键伸长时共价键力减弱所致,因此反应模型的结果可能更为真实。然而,当 ε > 0.1 时,由于开关函数的影响,反应势也产生了非物理结果,描述了共价键的形成和断裂。目前的结果表明,在研究拉伸应变下的聚合物性能时,必须仔细选择势模型和变形范围。© 2022 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可 (http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0095975
简介:被认为是月球南极的永久遮蔽区域(PSR),可以容纳多种资源,这些资源对于支持和推进人类对月球和其他行星体的探索至关重要。遥感数据(例如,Diviner [1])表明,PSR中的低表面温度为水冰和其他挥发物的冷捕获提供了一个有利的热环境,某些区域的温度低至20K。准确的估计了Lunar Regolith在低于100 K的pot pot pot pot pot pot pot pot pot pot pot thermant 〜100 k的距离〜100 k的距离。然而,关于月球雷果石的热物理特性的许多已发表研究都集中在150 K以上的温度上(例如2)。我们提出了实验性的努力,以测量在15-300 K的温度范围内测量直径为400-500 µm的直径玻璃珠和NU-LHT-2M月球模拟物,以及15-150 K的Apollo 11 Regolith。端盖设计以减少热量损失,并进行扩展的加热探针针,以改善测量值。初步结果表明,温度的导热率降低,低于月球雷果石的标准导热率模型预测(例如4)。干岩的低温热导率测量值可能是估计特定区域中冰或挥发性含量的基线。水冰的变化和挥发性丰度有望影响原位观察到的热导率值,或从遥感测量值中推断出来。
设计及其应用,2,4 其中仅需最少的时间和资源即可快速评估 k 是关键。有很多可用的方法来评估 k 。基于第一性原理的非谐晶格动力学 (ALD) 是过去几年中广泛采用的方法。5 然而,使用大型超胞进行的太多力计算虽然可以部分重建,但非常耗时耗资源,6 这限制了其在高通量计算预测 k 中的实际应用。或者,使用经验模型评估 k 是一种更有效、更可行(计算成本更低)的方法,例如 Debye-Callaway 模型、7-9 Slack 模型、10 等。特别是,Slack 模型已广泛应用于评估许多材料的 k,11-13 显示出快速预测 k 和洞察热传输的潜在能力。14-16
晶格热导率(κL)是晶体固体的一个重要特性,对热管理、能量转换和热障涂层具有重要意义。基于密度泛函理论(DFT)的计算工具的进步使得能够有效利用基于声子准粒子的方法来揭示各种晶体系统的潜在物理原理。虽然高阶非谐性通常用于解释晶体中的异常传热行为,但DFT中的交换关联(XC)函数对描述非谐性的影响却在很大程度上被忽视了。XC 函数对于确定 DFT 描述固体和分子中电子/离子之间相互作用的准确性至关重要。然而,固体物理中大多数XC泛函主要侧重于计算只需要原子偏离平衡态很小位移(在谐波近似内)的性质,如谐波声子和弹性常数,而非谐性则涉及较大的原子位移。因此,对于XC泛函来说,在非谐性水平上准确描述原子相互作用更具挑战性。本研究采用多种XC泛函,如局部密度近似(LDA)、Perdew-Burke-Ernzerhof(PBE)、固体和表面的修正PBE(PBEsol)、优化的B86b泛函(optB86b)、修正的Tao-Perdew-Staroverov-Scuseria(revTPSS)、强约束和适当范数泛函(SCAN)、正则化SCAN(rSCAN)和正则化恢复SCAN(r2SCAN)以及不同的扰动阶数,包括谐波近似内的声子(HA)加三声子散射(HA+3ph)、用自洽声子理论计算的声子(SCPH)加三声子散射(SCPH+3ph)、SCPH声子加三声子和四声子散射,系统地研究了16种具有岩盐和闪锌矿结构的二元化合物的室温κL。 (SCPH+3,4ph)。结果表明,XC 函数与扰动阶表现出强纠缠,计算出的 κ L 的平均相对绝对误差 (MRAE) 受 XC 函数和扰动阶的强烈影响,导致误差抵消或放大。在 HA+3ph 级别的 revTPSS (rSCAN)、在 SCPH+3ph 级别的 SCAN (r 2 SCAN) 和在 SCPH+3,4ph 级别的 PBEsol (rSCAN) 中实现了最小 (最大) MRAE。在这些函数中,PBEsol 在最高扰动阶下表现出最高的精度。SCAN 相关函数表现出中等精度,但存在数值不稳定性且计算成本高的问题。此外,所有 XC 函数都识别出了四次非谐性对岩盐和闪锌矿结构中 κ L 的不同影响,这归因于这两种结构中不同的晶格非谐性。这些发现对于选择合适的泛函来描述非谐声子提供了有价值的参考,并为高阶力常数计算提供了见解,有助于开发更精确的固体材料XC泛函。
摘要:在片上操作和体温特有的温度下,用于高效能量收集器的 CMOS 兼容材料是可持续绿色计算和超低功耗物联网应用的关键因素。在此背景下,研究了新的 IV 族半导体,即 Ge 1 − x Sn x 合金的晶格热导率 (κ)。通过最先进的化学气相沉积在 Ge 缓冲 Si 晶片上外延生长 Sn 含量高达 14 at.% 的层。通过差分 3 ω 方法电测量晶格热导率 (κ) 从 Ge 的 55 W/(m · K) 急剧下降到 Ge 0.88 Sn 0.12 合金的 4 W/(m · K)。经验证,对于应变松弛合金,热导率与层厚度无关,并证实了先前通过光学方法观察到的 Sn 依赖性。实验 κ 值与电荷传输特性的数值估计相结合,能够捕捉这种准直接带隙材料系统的复杂物理特性,用于评估 n 型和 p 型 GeSn 外延层的热电性能系数 ZT。结果突出了单晶 GeSn 合金具有很高的潜力,可以实现与 SiGe 合金中已经存在的能量收集能力,但在 20°C - 100°C 温度范围内,没有与 Si 兼容的半导体。这为在 CMOS 平台上实现单片集成热电提供了可能性。关键词:热电材料、晶格热导率、GeSn 合金、CMOS、绿色计算、能量收集 ■ 简介