1 黄金海岸 1 1 0 0 0 2 布里斯班 1 1 0 0 0 3 阳光海岸 1 1 0 0 0 4 宽湾 1 1 1 0 0 5 罗克汉普顿 0 1 1 0 0 6 马尔堡 0 1 1 0 0 7 麦凯 0 1 1 1 1 8 普罗瑟派恩及近海群岛 0 0 1 1 1 9 汤斯维尔 0 0 1 1 1 10 英厄姆 0 1 1 1 0 11 凯恩斯 0 1 1 1 0 12 约克角 1 0 1 1 0 13 费尔角 0 0 1 0 0 14 海湾 0 1 1 0 0 15 昆士兰州内陆 1 0 0 0 0 16 北领地北部 1 1 0 0 0 17 达尔文 0 0 1 0 0 18 其余地区 北领地 0 0 0 0 0 19 库努纳拉-布鲁姆 1 0 1 0 1 20 皮尔巴拉 0 0 0 0 1 21 杰拉尔顿 中央海岸 1 1 1 0 0 22 珀斯 1 1 0 0 0 23 奥尔巴尼-班伯里 1 1 0 0 0 24 其余地区 西澳大利亚 1 0 0 0 0 47 北坡 0 0 0 0 0 48 中北海岸 1 0 0 0 0 49 远北海岸 1 1 0 0 0
预计到 2050 年,世界人口将达到 96 亿,在满足日益增长的优质蛋白质需求的同时为子孙后代保护自然资源,面临着巨大挑战。渔业可以通过提供动物蛋白、创造就业机会和促进经济增长,在应对这一挑战中发挥关键作用。生物絮凝技术 (BFT) 代表一种高度先进的水产养殖方法,其中营养物质在养殖系统中不断循环和再利用,从而最大限度地减少或消除了水交换的需要。BFT 是一种生态友好型方法,通过控制水中的碳和氮来利用原位微生物蛋白质生产。生物絮凝是指水中的悬浮生长物,由活的和死的颗粒有机物、浮游植物、细菌、原生动物和细菌的食草动物组成。它既是养殖生物的食物资源,也是一种水处理解决方案。该系统又称为活性悬浮池、异养池或绿汤池。生物絮凝池的科学建造是生物絮凝养鱼系统絮体和鱼的产量和生产力的重要决定因素。因此,在实施生物絮凝养鱼时,应特别注意生物絮凝池的科学建造。
摘要:随着电子产品的快速发展,热管理已成为最关键的问题之一。激烈的研究集中在用于增强传热的表面修饰上。在这项研究中,多层铜微壳(MCM)是为商业紧凑的电子冷却而开发的。沸腾的传热性能,包括临界热量(CHF),传热系数(HTC)和成核沸腾的发作(ONB)。研究了Micromesh层对沸腾性能的影响,并分析了起泡特性。在研究中,MCM-5显示了207.5 W/cm 2的最高临界热量(CHF),而HTC的HTC为16.5 w(cm 2·K),因为它具有丰富的微孔作为核位点,并且具有出色的毛细管焊接能力。此外,将MCM与文献中的其他表面结构进行了比较,并具有高竞争力和在商业应用中的高功率冷却的潜力。
细胞和基因疗法是一种精确药物,可为患者的DNA量身定制治疗。截至2024年9月,有39个批准的细胞和基因疗法。一旦成为新兴的科学,FDA预计每年从2025年开始批准10至20个细胞和基因疗法。是治疗疾病的细胞和基因疗法,例如过正常白细胞营养不良,血友病B和Duchenne肌营养不良。尽管这些新疗法有可能对患者的健康和生活质量产生深远影响,包括治愈疾病的能力,但成本和不可持续的药物管道是不可持续的。
摘要:以降水为导向的冷池在组织热带对流中起着重要作用。先前在辐射对流平衡(RCE)设置中对热带对流的研究发现,冷池倾向于相互碰撞并触发新的对流。目前尚不清楚为什么大多数冷池没有足够的空间就可以消散而没有碰撞。,我们将其解释为较小的平均冷池半径Req,而最大电势半径r最大。后者表示冷池的浮力所需的半径是通过表面加热来消除的。应用能量平衡约束会导致其比率R Max / R EQ的分析解决方案,该解决方案取决于Bowen比率,表面降水量 - 蒸发比和雨水沉积效率。该理论预测,在海洋热带对流方面,鲍恩比率远小于一个,r eq不能达到最大,而冷池必须经常碰撞。使用不同的降雨蒸发率,大型模拟支持了这一预测。在第二部分中,我们将能量平衡约束与对流生命周期模型相结合,以获得平均冷池半径Req的理论。
本出版物是ICTAC工作组“热化学” 1期间1997年至1998年期间努力的结果。它涉及用于量热法和差异疗法分析的参考材料(缩写形式:RM)。它代表了IUPAC致命的“物理化学测量和标准”制作的两个先前的文档的更新版本:第一个发表于1974年的Pure and Applied Chemistry [1],第二本书在书籍中,标题为“重新认可的参考材料,用于实现物理学属性的实现” [2]。量热法和差分热分析与涉及物理,化学和生物学过程的广泛科学和技术研究领域相关。量热法通常会产生高度可再现的结果,但是由于测量系统的校准故障,可能是无法降低的。校准是每项热分析研究的基本要求。需要在测量仪器指示的值与正确值之间建立定义定义的关系。通过量化产生的
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
A 表面 (m2) A 翅片横截面积 (m2) A 1 圆柱体内表面 (m2) A 1 与冷却空气接触的框架壳体表面 (m2) AF in 翅片表面 (m2) A f 框架壳体有效面积 (m2) 热容 (W x sl°C) C p 恒压比热容 (JIK11°C) 外径 (m) 标量因子 热导纳 (WI°C) [G] 导纳矩阵 对流传热系数 (w/ocm2) h f 框架薄膜系数 (WI°Cm2) 长度 (in) hFi „ 翅片薄膜系数 (W/°Cm2) H Fi„ 散热片轴向长度 (m) 电流 (A) k a 层压轴向热导率 (WI°Cm) k r 层压径向热导率 (WI°Cm) k e 表观热导率 (WI°Cm) k i 热导率槽绝缘的导热系数 (WI°Cm) k 翅片 翅片的热导率 (WI°Cm) k 空气 空气的热导率 (WI°Cm) l g 气隙长度 (m) N pr 普朗特数 A r u 努塞尔特数
多年来,蜥蜴热生态学研究一直依靠接触式测温法获得动物的体内温度 (T b )。然而,随着技术的进步,人们对使用新的、侵入性较小的方法(如红外 (IR) 高温计和热成像法)来推断爬行动物的 T b 产生了兴趣。尽管如此,很少有研究测试过这些新工具的可靠性。本研究测试了使用红外摄像机作为一种非侵入性工具来推断蜥蜴的 T b 的效果,使用了三种不同体型的蜥蜴科物种(Podarcis virescens、Lacerta schreiberi 和 Timon lepidus)。考虑到区域异温现象的发生,我们将六个身体部位(吻部、眼睛、头部、背部、后肢、尾根)的热成像读数与常用于在现场和实验室研究中测量 T b 的泄殖腔温度(通过温度计相关的热电偶探头测量)成对进行了比较。结果显示,所有身体部位与泄殖腔温度之间存在中等至强相关性(R 2 =0.84 – 0.99)。然而,尽管尾根读数在所有三个物种中都显示出最强的相关性,但眼睛的温度绝对值和变化模式与泄殖腔测量值最为一致。因此,我们得出结论,眼睛是红外摄像机读数与动物内部环境读数最接近的身体部位。或者,也可以使用其他身体部位,只要进行仔细的校准即可。我们为未来使用热成像技术推断蜥蜴 Tb 的研究提供了指导。
