摘要:人工设计的2D材料为热管理提供独特的物理特性,超过了天然发生的材料。在此,使用范德华的外观外观,我们证明了基于原子上薄的晶格不匹配的BI 2 SE 3/MOSE 2超晶格2级超晶格和石墨烯/PDSE 2异质结构来设计极限绝缘超材料的能力W/MK)在室温下,与无定形材料相当。使用频率域的热疗法和低频率拉曼光谱获得的实验数据,并由紧密结合的声子计算支持,揭示了晶格不匹配,声子接口散射,尺寸效应,温度效应,温度效应,温度效应,温度和界面热电阻对跨平面热量散热,对不同的热传输和不同的热量的作用。我们的发现提供了有关新兴合成和热表征方法的基本见解,并为开发具有量身定制的热运输特性的不同物质材料的大面积杂源范德华膜的发展提供了宝贵的指导。关键字:声子传输,导热率,频域热素融合BI 2 SE 3/MOSE 2,石墨烯/PDSE 2 T
摘要 - 在此简介中,我们提出了一种逐步策略,以准确估计基于硅的多纤维双极晶体管结构中的纤维温度,从常规的调查中。首先,我们在给定的环境温度下提取几乎零动力的自加热电阻(r TH,II(t a))和热耦合因子(C IJ(t a))。现在,通过将叠加原理应用于几乎零功率的这些变量上,其中保留了热扩散方程的线性,我们估计有效的热电阻(r th,i(t a))和相应的修订后的效率温度t i(t a)。最后,Kirchhoff在T I(t a)上的trans形得出每个纤维处的真实温度(t i(t a,p d))。所提出的提取技术自动包括晶体管结构中存在的后端金属层和不同类型的沟渠的影响。该技术是针对具有不同发射极尺寸的双极晶体管的3D TCAD模拟结果验证的,然后应用于从stmicroelectronics B5T技术中从最先进的多纤维sige HBT获得的实际测量数据。可以观察到,原始测量数据在40 mW左右的叠加量低估了真正的纤维温度约10%。
使用所谓的TIM(热界面材料)层,裸露的Si表面或Si与Au底部金属化(如Gan-On-Si芯片系统中)的组装(如Gan-On-Si芯片系统中)仍然具有挑战性。大多数TIM基于Ag-Sinter的层[1,2]。使用基于Ag的TIM代替基于SN的焊料具有许多优势,特别是:a)基于Ag的基于Ag的糊状(以上100 w m -1 K -1)的导热率明显优于焊料(范围40-60 Wm -1 K -1)和b)通常的较薄[1-3]。TIM的性质在很大程度上取决于微结构参数,例如存在空隙和TIM层厚度。通常,我们可以期望较薄的层是更好的热性能。然而,在最近的一项研究[4]中,作者表明,键线厚度应在20°M至50°M之间。从机械和热性能的角度来看,这种厚度范围都是最佳的。层稀薄的层小于20°M的特征是结构内的主应力和菌株较高,这可能会导致其粘合剂或凝聚力衰竭。对于厚度高于50℃的接头,其热电阻超过了可接受的极限。
在追求最佳的储能解决方案时,可充电电池对它们在电动汽车,飞机和卫星中的应用引起了极大的关注。这项研究着重于在分析的初步阶段利用集团电容热建模技术的二氧化锂和镍镉电池的热管理。该研究的重点是通过分析和数值方法估算电池温度的一般电容热方程。数值方法采用了第四阶runge-kutta方法,该方法涉及较少的计算成本,相对稳定且准确,以估算具有可变内部电阻的温度,这是热行为分析的关键因素。相反,分析方法假设电池表面的温度分布均匀,从而简化了内部导电和外部对流热电阻之间的逐渐差异。使用误差标准技术对实验数据的比较分析表明,考虑到内部电阻的动态变化,数值模型与实验发现更加一致,并且与恒定的内部电阻相比,与分析模型相比,具有统计学上的拟合度更高。这项研究强调了电池热建模技术在电池热管理中的有效性,强调了动态内部电阻对分析热行为的重要性。
摘要:研究了焊接联合制造对焊接到玻璃环氧基板(FR4)的IGBT的热性能的影响。使用厚度为1.50 mm的玻璃 - 环氧基底,覆盖有35 µm厚的Cu层。从热空气平整(HAL)SN99CU0.7AG0.3层厚度为1÷40 µm。 IGBT晶体管ngb8207亿固定在sacx0307(sn99ag0.3cu0.7)糊中。样品被焊接在不同的焊接和不同的温度下框架中。测量了样品的热阻抗z t(t)和热电阻。进行了微观结构和空隙分析。发现不同样本的差异分别达到z th(t)和rth的15%和20%。尽管焊接接头中气体的比率在3%至30%之间变化,但发现空隙比与r TH的增加之间没有相关性。在不同的焊接技术的情况下,焊接接头的微观结构在金属间化合物(IMC)层的厚度上显示出显着差异。这些差异与焊接过程中Lilesus上面的时间息息相关。与焊料的热导率相比,IGBT的热参数可以更改,因为IMC层的导热率增加。我们的研究强调了使用IGBT组件组件的焊接技术的重要性和热量文件的重要性。
这项研究介绍了一种创新的多学科设计方法,用于高度导电和轻巧的针脚的散热器,利用石墨烯技术的优势。主要目的是优化电动汽车(EV)中基于硅碳化物(SIC)的逆变器的热管理。在模块上,在模块上进行了综合分析,包括扫描电子显微镜(SEM)和能量色散X射线光谱(EDS),在模块上进行了全面的分析。采用3D结合传热(CHT)方法的详细流体动力学模型用于评估与冷却液接触的SIC功率开关的热行为。多学科分析最初是在基于铝制的散热器上实施的,经过实验验证,随后与石墨烯进行了比较。与热链设计中的石墨烯的整合表现出显着的改进,包括在6 L/min min流体流量的情况下,传热系数(HTC)增加了24.4%,热电阻(接收到流体)降低了19.6%。因此,与铝制版本相比,基于石墨烯的散热器中的SIC芯片的温度升高11.5%。通过采用石墨烯而不是传统金属实现的SIC逆变器的冷却解决方案的改进,作为概念证明。这表示在性能和功率密度之间的关键平衡方面向前迈出了一步。
抽象的硅胶橡胶(SR)化合物准备在高温下施用O形圈。硅烷表面修饰的Fe 2 O 3和未修饰的Fe 2 O 3添加到SR化合物中,并通过对FESEM(现场发射扫描电子显微镜)(用于形态学)和TGA和TGA的分析来评估化合物,以及在不同温度,热敏度,硬度,硬度,硬度,硬度,压缩和压缩集合的热导率的测试。此外,在一家石化公司的7 bar压力和温度为180°C的压力下,在一家石化公司的在线气相色谱(GC)中制备了O形圈,并在一个在线气相色谱(GC)中进行了测试。获得的结果表明,SR的热导率,衰老电阻,热稳定性和机械性能下降:表面修饰的Fe 2 O 3填充SR,未修饰的Fe 2 O 3填充SR和SR,而没有Fe 2 O 3。过度使用Fe 2 O 3降低了机械性能和硬化性的加工性。随着温度升高,SR填充的SR的热导率填充有不同体积的体积百分比和未修饰的FE2O3。使用表面修饰的Fe 2 O 3提高了导热率并提高了衰老耐药性,最终增强了热电阻。这对于产生对高温具有抗性的O形圈特别有益。现场测试结果证实了O形圈与高温条件兼容。此外,在测试后,O形圈表现出低体积肿胀和光滑的表面,没有任何裂缝,水泡或不平衡。
高功率电子设备(例如超级计算机)会产生相当大的热量。如果该热量未从设备的内部电路转移,则电路将过热并显着降低设备的寿命和可靠性。由量身定制的热特性所特色的热管理材料用于散发设备电路的热量。钻石(D)和铜(CU)是具有高热电导率(TC)的出色耗散材料。Cu/D复合材料由于其潜在的高TC和可调节的热膨胀系数,可将其用作下一代散热器材料。然而,Cu和C之间存在较弱的亲和力。已证明,Cu和D之间的碳化物形成金属层(例如W,Cr,Ti)已被证明是确保界面化学键合和增强TC的理想选择。在金属基质中集成的钻石颗粒的可加工性差使使用常规技术几乎不可能形成净形。添加剂制造能够制造具有类似于散装的特性的复杂锋利。在这项研究中,我们探索了使用选择性激光熔化作为3D打印技术的高效性能产生CU/D复合材料的可行性。通过光热辐射测量法测量与扫描和透射电子显微镜相互作用的表征相关的热电阻,是在CU和碳之间具有不同碳化物形成金属的多层模型材料上进行的。-这项研究的目的是1)提高对3D打印MMC的基本理解,以及2)通过界面/相间工程开发了CU/D复合材料改进的制造技术。
摘要:本文报告了具有正方形和圆形冷却通道的微通道热交换器的三维数值优化的结果。优化的目的是最大化全局热电导或最大程度地减少全局热电阻。响应表面优化方法(RSM)用于数值优化。在单位细胞微通道的底部表面施加了高密度热通量(2.5×10 6𝑊/𝑚2),并使用ANSYS Fluent Commercial软件包进行了数值模拟。微通道的元素体积和轴向长度𝑁= 10 r均固定,而宽度则是免费的。冷却技术采用单相水,该水通过矩形块微通道散热器流动以在强制对流层流方向上去除微通道底部的热量。在微通道轴向长度上泵送的流体的速度为400≤𝑅𝑒≤500的范围。有限体积方法(FVM)用于描述用于求解一系列管理方程的计算域和计算流体动力学(CFD)代码。研究并报告了水流数量和雷诺数对峰值壁温度和最小温度的影响。数值结果表明,具有方形冷却通道的微通道比具有圆形构型的微量散热器具有最大最大的全局热电导率。数值研究的结果与开放文献中的内容一致。关键字:正方形配置,圆形配置,微散热器,数值优化,导热率[接收到2022年8月1日;修订于2022年10月8日;被接受的2022年11月6日]印刷ISSN:0189-9546 |在线ISSN:2437-2110
词汇表绝对湿度 - 以每磅干空气中的水蒸气(或磅)表达的空气水分含量。吸收 - 表面吸收的辐射与落在该表面上的总能量的比率。主动太阳能 - 特殊设备使用的太阳能辐射可提供空间加热,热水或电力。空气屏障 - 建筑物外壳的任何部分都具有抵抗空气泄漏的能力。空气屏障会阻止大多数空气泄漏,这是有效的。主要的空气屏障是一系列空气屏障中最有效的。空气变化 - 在给定时间段内的空间中替换一定数量的空气,通常表示为每小时空气变化。如果建筑物每小时有一个空气变化,则相当于建筑物中的所有空气在一个小时内被替换。空气在50 pascals上发生变化 - 当鼓风机门减压到50 pascals时,房屋的完整体积被换成外部空气的次数。空调 - 用于空气处理的设备组装,该设备由通风,空气循环,空气清洁和传热(供暖或冷却)组成。该单元通常由蒸发器或冷却线圈组成,以及电动压缩机和冷凝器组合。空气膜 - 一层与表面相邻的空气,可提供热电阻。空气膜系数 - 通过空气膜进行传热的量度。空气处理器 - 一个钢制柜,该钢柜装有带冷却和/或加热线圈的鼓风机。空对空热交换器 - 带有单独的空气室的设备,可在有条件的空气和供应到建筑物的外部空气之间转移热量。环境气温 - 周围温度,例如建筑物周围的室外空气温度。环境照明 - 照明散布在照明空间,以确保安全,安全和美学。交替电流(AC) - 电流的流量不断改变正面和负面之间的方向。美国电力公司几乎所有的功率都以每秒60次的速度移动,这一方向移动。