摘要 - 在光子电路和组件之间的超低损失光学耦合在许多应用中至关重要,例如光子量子计算,传感或光学通信。本文通过表征其光学偶联效率(CE)和几何形状鲁棒性来表征基于SU-8的锥度光学互连的热稳定性,当时聚合物承受高温。在1分钟至120分钟内,将锥度从280°C加热到400°C。实验结果表明,耦合效率降解与高温期的持续时间是线性的,而温度和持续时间之间的关系则符合定义的CE损失的对数模型。它提供了一种有用的方法来预测超过给定CE损失之前的最大温度和持续时间,因此可以预测材料处理的最大评分。提取了最大0.1 dB光学耦合降解的极限温度持续曲线。然后证明SU-8龙头可以承受300°C的温度最多9分钟,而350°C的温度最多可容纳1分钟和30 s,而光损失小于0.1 dB。锥度的结构机械稳定性被确认为400°C,持续1小时,远高于上述光学极限。
稿件收到日期为 2024 年 6 月 20 日;接受日期为 2024 年 7 月 25 日。出版日期为 2024 年 7 月 31 日;当前版本日期为 2024 年 9 月 27 日。这项工作部分由波兰国家科学中心资助,协议编号为 OPUS 2019/33/B/ST3/02677;部分由波兰国家研究与发展中心资助,协议编号为 M-ERA.NET3/2021/83/I4BAGS/2022;部分由 M-ERA.NET3 通过欧盟“地平线 2020”研究与创新计划资助,协议编号为 958174;部分由波兰教育和科学部资助,项目编号为 0512/SBAD/2420。这封信的审阅由编辑 D. Shahrjerdi 安排。 (通讯作者:Tymoteusz Ciuk。)Tymoteusz Ciuk、Beata Sta´nczyk、Krystyna Przyborowska 和 Dariusz Czołak 就职于 Łukasiewicz 研究网络——微电子与光子学研究所,02-668 华沙,波兰(电子邮件:tymoteusz.ciuk@imif.lukasiewicz.gov.pl)。Corinne Nouvellon 和 Fabien Monteverde 就职于 Materia Nova,7000 Mons,比利时。Semir El-Ahmar 就职于波兹南理工大学物理研究所,61-138 Pozna´n,波兰(电子邮件:semir.el-ahmar@ put.poznan.pl)。本信中一个或多个图表的彩色版本可在 https://doi.org/10.1109/LED.2024.3436050 上找到。数字对象标识符 10.1109/LED.2024.3436050
CPVC或氯化聚氯乙烯氯化物与PVC(聚氯化氯)相比,其氯含量增加了约66%,具有优越的热稳定性。但是,超过其温度限制会导致降解且难以处理。考虑CPVC是PVC通过氯化的进一步乘积,可以通过PVC推测CPVC的反应机理。尽管CPVC是PVC的导数,但它是一个复杂的系统。聚合物分子结构中至少存在三种不同类型的重复单元:-CH2-CHCL-, - CHCL-CHCL-和少量的-CCL2-单元(10)CPVC是重要的特种聚合物,这是由于其高玻璃过渡,高热偏移温度,杰出的火焰和烟雾和化学效果。虽然CPVC的玻璃过渡温度通常随着氯的量增加而升高,但氯含量的增加会导致CPVC变得更加困难
一种高度疏水的离子液体(IL),3-氨基丙基 - tributylylylyphosphonium bis(三氟甲基索尔索尔)酰亚胺([AP 4443] [NTF 2]),并通过cel- lulose nananomearials(Cnms)(cnms)(cnms)(cnms)的表面进行了施用(cn)。修饰的CNM的化学结构,形态,热稳定性和表面疏水性都充分表征。从核磁共振光谱(1 H,13 C,19 F和31 P),傅立叶变换红外光谱,X射线光电光谱和X射线衍射证实[AP 4443] [ap 4443] [ntf 2]成功地将CNM的表面置换到2.5%的表面功能化。透射电子显微镜分析证实,修饰后保留了CNM的尺寸,但经过修饰的纤维素纳米晶体(CNC)的聚集显着。热重量分析表明,修饰的CNC从〜252℃至〜310°C的降解温度显着升高。修饰的纤维素纳米纤维(CNF)并未显示出热稳定性的升高。修饰的CNM悬浮液显示出对水的亲和力降低,并且在水性培养基中的聚集体形成。此外,水接触角测试表明,改进的CNM的疏水性增强了。这种修饰方法具有使用[AP 4443] [NTF 2] IL用于功能材料的潜力,以实现适合使用热塑料水性加工的新型疏水CNM,用于制造热稳定的复合材料,并用于电池的聚合物凝胶电解质。
使用大环氧化物氧化物和CO 2合成了三个分子量的分子量碳酸盐),并使用大环苯二氧化二层二层型催化剂合成,并通过常规纯化程序纯化。与使用Salen Metal催化剂合成的分子量相似的聚(环己烯碳酸盐)相比,观察到大约100℃的热稳定性降低。这种降低源于二脂催化剂的痕迹,该催化剂能够促进聚(环己烯碳酸苯甲酸酯)对CO 2和氧化氧化物的解聚,与常规的逆向机制相比,该机制可导致环境碳酸盐。可以通过更改残留的二脂催化剂的量或包含具有官能基团的物种来精确调整降解的发作,从而可以减少催化中心的可用性。因此,通过改变催化剂和周围化学环境的浓度来控制聚(环己烯碳酸盐)的热稳定性的可能性为将这些聚合物用作高级应用中利益的材料中的组成部分铺平了道路。
结果:我们应用了转移学习的原理,以使用输入蛋白序列从蛋白质语言模型(PLM)产生的嵌入来预测蛋白质的热稳定性。我们使用了在数亿个已知序列上进行训练的大PLM。使用此类模型的嵌入使我们能够使用超过一百万个序列序列训练和验证高性能的预测方法,我们从具有注释的生长温度的生物体中收集了超过一百万个序列。我们的方法Temstapro(蛋白质的稳定温度)用于预测CRISPR-CAS II类效应蛋白(C2EPS)的热稳定性。预测表明,在热稳定性方面,C2EP组之间的差异很大,并且很大程度上与先前发表,并且我们新获得的实验数据。
摘要。在当今世界,人们迫切需要可持续和可靠的能源解决方案,因此对热能存储 (TES) 先进材料的追求已变得至关重要。在这些材料中,熔盐凭借其出色的热性能和广泛的工作温度范围,已成为后起之秀。HITEC 是硝酸钠、亚硝酸钠和硝酸钾的共晶混合物,由于其独特的良好热特性融合而成为上乘之选。这篇全面的评论深入探讨了 HITEC 熔盐的热性能及其在热能存储中的多种应用,阐明了其作为应对当代全球挑战的关键要素的潜力。该评论研究了 HITEC 的比热容、热导率和热稳定性,并对其作为 TES 介质的功效提出了关键见解。这种理解促进了可持续发展目标 7 的推进。本文探讨了基于 HITEC 的 TES 系统取得的进展,强调了促进实现可持续发展目标 9 的创新工程方法和新兴技术。此外,本文还讨论了与 HITEC 熔盐相关的挑战,例如腐蚀和材料兼容性问题,并研究了正在进行的克服这些限制的研究工作。对 HITEC 与其他熔盐混合物的比较评估阐明了其竞争优势。本综述整合了有关 HITEC 熔盐用于热能存储应用的知识,为致力于推进可持续能源技术的研究人员、工程师和政策制定者提供了宝贵的观点。本综述强调了 HITEC 熔盐在推进热能存储技术方面的关键作用,直接影响多个可持续发展目标的实现。
评估必须涉及稳定性数据的统计分析,以确定批准的长期存储条件和CTC暴露的衰减率,这考虑了最坏情况下的情况,在这种情况下,计划的暴露在疫苗范围内发生在疫苗生命范围内,这些疫苗批次填充了或接近最小释放效力(MRP)。
世界动物卫生组织已将牛传染性胸膜肺炎 (CBPP) 列为牛的须报告的呼吸道疾病。这种疾病也称为牛肺病,是由细菌 Mycoplasma mycoides subsp. mycoides (Mmm) 引起的 [1],其特征是在急性至亚急性期出现严重的纤维素性支气管肺炎和胸腔积液,在慢性病例中出现肺隔离症 [2]。牛传染性胸膜肺炎在撒哈拉以南非洲地区很普遍,由于死亡率和发病率高,以及扩散速度快,造成了重大的生产损失。这种疾病对依赖畜牧业的人们产生了重大影响,导致粮食供应减少,并因贸易限制而造成重大收入损失 [3]。据说牛传染性胸膜肺炎是
聚苯胺和石墨烯纳米片 (PANI-GNP) 纳米复合材料是使用氧化剂过氧化二硫酸铵 (APS) 通过聚苯胺的原位氧化聚合合成的。与 PANI 相比,纳米复合材料中的 GNP 质量相差 5、10 和 15 wt%。对合成的聚苯胺涂覆的石墨烯纳米片 (PANI-GNP) 纳米复合材料进行化学表征,并使用傅里叶变换红外光谱 (FTIR)、拉曼光谱、扫描电子显微镜 (SEM)、紫外可见光谱和 X 射线衍射分析 (XRD)。FTIR 和拉曼光谱分析证实了聚苯胺在 GNP 上的均匀涂层。SEM 显微照片和 XRD 图案展示了样品的聚合质量和结晶程度。 UV-Vis 分析显示聚苯胺的带隙减小,这证实了纳米复合材料由于带隙变化而更适合光电应用。TGA 分析表明,PANI 的热稳定性随着 GNP 质量的增加而增加。这项研究表明 GNP 有可能作为填料有效改变 PANI 的形态、电学、光学和热学性质。