当今IT环境的典型数据处理,检索和转移[1]促使新一代研究人员寻求具有增强光子应用功能的创新材料。非线性光学(NLO)是这些短语所指的主题。当功能强大的电磁场与材料相互作用时,它会产生与原始场相同的相位,频率和振幅不同的新字段[2]。这种现象正在集中非线性光学元件。某些材料暴露在光线时会发生变化,并取决于方向,温度,光波长等因素。应用程序,例如数据处理,光子学,THZ生成,激光放大器等应用程序[3,4]现在很大程度上依赖于这些材料。研究人员正在逐步专注于寻找新型的NLO材料,以满足对此类物质的不断增长的需求。基于其组成的非线性光学材料有三种类型:有机,无机和半有机物[5]。无机材料具有良好的机械和热稳定性,但非线性值较低[6],而有机材料具有有效的非线性特性,但具有明显的机械和热不稳定性。化学工程方法可用于改变有机非线性材料的特征,以满足各种业务的不断发展的需求[7]。响应增强性能的需求,出现了新的材料,称为半有机NLO材料。除了出色的机械和热稳定性外,它们还包括显着的非线性。各向异性材料是晶体固体,表现出对其特征的定向依赖性。对于NLO行为,有必要在必须是非中心对称的空间群中结晶的非线性材料。
纳米复合涂层的硬度增强及其兴起的原因。简要概述了硬质纳米复合涂层领域的知识现状 [1]。第二部分致力于纳米复合涂层的热稳定性、纳米复合涂层的热循环以及使用溅射形成具有热稳定性和 1000 C 以上抗氧化性的非晶态涂层。作为例子,报道了 (i) nc-t-ZrO 2 /a-SiO 2 纳米复合涂层在高达 1400 C 的空气中耐热循环 [2] 和 (ii) a-(Si 3 N 4 /MeN x ) 和 a-(Si-B-C-N) 非晶态涂层在 1000 C 以上的空气中热稳定且抗氧化 [3]。第三部分报告了具有增强韧性的新型先进硬质纳米复合涂层,特别是 (i) 由分散在非晶基体 (AM) 中的纳米颗粒 (NG) 组成的 NG/AM 复合涂层和 (ii) 抗开裂的高弹性复合涂层。例如,(i) 具有低摩擦和磨损的 nc-TiC/a-C 纳米复合涂层和 (ii) Zr-Al-O [4]、Al-Cu-O 氧化物复合涂层 [5] 和 Al-O-N 氮化物/氧化物纳米复合涂层 [6],其硬度 H 18 GPa,低杨氏模量 E 满足条件 H/E 0.1,高弹性回复 We 70% 和大大增强的抗开裂性,这些涂层被详细报告。结果表明,具有增强韧性的硬涂层代表了一类具有巨大应用潜力的新型先进防护和功能涂层。最后,概述了先进硬纳米复合涂层的下一步发展趋势。参考文献
纳米复合涂层的硬度增强及其兴起的原因。简要概述了硬质纳米复合涂层领域的知识现状 [1]。第二部分致力于纳米复合涂层的热稳定性、纳米复合涂层的热循环以及使用溅射形成具有热稳定性和 1000 C 以上抗氧化性的非晶态涂层。作为例子,报道了 (i) nc-t-ZrO 2 /a-SiO 2 纳米复合涂层在高达 1400 C 的空气中耐热循环 [2] 和 (ii) a-(Si 3 N 4 /MeN x ) 和 a-(Si-B-C-N) 非晶态涂层在 1000 C 以上的空气中热稳定且抗氧化 [3]。第三部分报告了具有增强韧性的新型先进硬质纳米复合涂层,特别是 (i) 由分散在非晶基体 (AM) 中的纳米颗粒 (NG) 组成的 NG/AM 复合涂层和 (ii) 抗开裂的高弹性复合涂层。例如,(i) 具有低摩擦和磨损的 nc-TiC/a-C 纳米复合涂层和 (ii) Zr-Al-O [4]、Al-Cu-O 氧化物复合涂层 [5] 和 Al-O-N 氮化物/氧化物纳米复合涂层 [6],其硬度 H 18 GPa,低杨氏模量 E 满足条件 H/E 0.1,高弹性回复 We 70% 和大大增强的抗开裂性,这些涂层被详细报告。结果表明,具有增强韧性的硬涂层代表了一类具有巨大应用潜力的新型先进防护和功能涂层。最后,概述了先进硬纳米复合涂层的下一步发展趋势。参考文献
ma-P 1200 是正性光刻胶系列,专为微电子和微系统技术而设计。这些光刻胶具有多种粘度,一次旋涂即可获得 0.3 – 40 μm 的薄膜厚度。非常适合用作蚀刻掩模,具有较高的干湿蚀刻耐受性 - 宽带、g-、h- 和 i-line 曝光 - 在湿蚀刻工艺和酸性和碱性电镀槽中具有非常好的图案稳定性 - 在干蚀刻工艺(例如 CHF 3 、CF 4 、SF 6)中具有高度稳定性 - 可获得良好的光刻胶图案热稳定性 - 水性碱性显影
铅酸电池的缺点是高自减电率和相对较短的充电/放电周期;因此,它不适用于储能应用。与铅酸,高充电/放电速率,低自我放电速率和锂电池的高能量密度相反,使其成为储存能量长期的候选者。取决于锂电池阴极上使用的金属,有各种锂电池具有不同的性能。氧化锂(LCO)具有高能量密度,并且在个人电子中很受欢迎。铁磷酸锂(LifePo4)具有更长的寿命和相对较好的热稳定性,使其成为储能溶液的更好选择。
除非对合成材料进行彻底分析,了解其各种特性及其在所需应用中的适用性,否则有关合成材料的信息是不完整的。材料表征课程旨在实现这一目标。它是一门结合了讲座和实验室部分的课程。本课程将讨论各种仪器技术的基本原理,即显微镜、光谱、表面表征、合成材料的热稳定性分析和机械稳定性分析。学生将接触真正的动手实验室实验,以传授表征各种合成材料的实验方法知识。成功完成本课程后,学生将熟悉各种表征技术,并有能力在未来的努力中开展此类实验,以找出相关材料的结构、热、化学和机械性能。
在这些聚合物中,聚(3-己内酯)(PCL)是一种半结晶脂肪族聚酯,已在从食品包装到生物医学等多个领域得到应用。 PCL 的多功能性及其在许多工业应用中的使用,主要与其固有特性有关,包括热稳定性(Tg=65℃和Tm=60℃)和机械稳定性,以及在各种聚合物中的高混溶性(例如聚氯乙烯或聚双酚 A 碳酸酯)2。 此外,PCL 的性质可以通过适当的改性进行精细调整。 例如,可以通过制备含 3-己内酯和其他单体的共聚物来调整其机械性能。 此外,降解速度也可以加快,如使用的聚(3-己内酯-共-乙交酯)共聚物的情况所示。
在层状材料中,例如 MoS 2 等过渡金属二硫属化物 (TMDC),[ 24–27 ] 或其他可剥离材料,如 GaSe,[ 28 ] 激子在室温下主导其光学特性,这证明了它们具有很强的结合能。在磷同素异形体(如 BP)中观察到了激子物种,具有近红外发射。[ 29,30 ] 相反,VP 作为一种替代品出现,具有可见光范围的光致发光 (PL) 发射和更高的热稳定性,[ 17,21 ] 但对其激子效应的研究仍处于起步阶段。在本研究中,我们使用原子力显微镜 (AFM)、拉曼和 PL 光谱在一系列温度和波长范围内研究了 SiO 2 /Si 衬底上剥离的 VP 的光降解、热效应和激子发射。我们的研究结果表明,VP 的降解速度受光的波长和曝光时间的强烈影响。发现在 VP 的带隙之上的光激发会由于与活性氧 (ROS) 的相互作用而导致更快的降解。PL 光谱显示激子数量逐渐下降,表明激子的寿命缩短以及激子的形成和稳定性发生变化,从而影响 VP 的量子效率。功率依赖性 μ -PL 测量表明中性激子和三子的强度线性增加,而它们的峰值能量之间的能量差随着功率的增加而减小,这表明激子能隙发生了变化。温度依赖性 PL 显示出可见的 X 0 和 T 峰,在高温下 X 0 发射的光谱权重更高,这意味着 VP 晶体中 T 发射的热稳定性降低。采用温度依赖性拉曼光谱法,在不同温度下确定了九种拉曼模式的峰位,最高可达