UNIT-I 12 小时 回顾半导体物理、p-n 结二极管、p-n 二极管特性及其操作、p-n 结电容(耗尽和扩散)、p-n 二极管击穿 二极管应用:削波和钳位电路、整流电路、齐纳二极管、齐纳二极管作为调节器、电压倍增器、p-n 二极管的开关行为 双极结型晶体管:晶体管的介绍和类型、结构、CB、CE 和 CC 模式下的 BJT 特性、工作点、交流/直流负载线、漏电流、饱和和截止工作模式、Ebers-moll 模型 偏置稳定:稳定需求、各种偏置方案、相对于 Ico、V BE 和 β 变化的偏置稳定性、稳定因素、热稳定性。
碳材料在电化学储能中起着重要作用,因为它们具有低成本、高可用性、低环境影响、表面功能团、高电导率以及热稳定性、机械稳定性和化学稳定性等优点。目前,碳材料可以被认为是超级电容器和电池领域探索最广泛的材料,超级电容器和电池是需要高功率和高能量的广泛应用的设备。然而,与所有技术一样,也有一个适应和优化的过程;因此,碳材料一直在与新兴的进步保持一致。同样,多年来,人们发现了生产更适合储能的碳的新方法和新工艺,使它们与金属基化合物产生良好的协同作用,以满足当前标准。在这项工作中,我们汇集了碳材料领域的进展
反应混合物中包括DNA(反向)、脱氧核苷酸(dNTP)、双脱氧核苷酸(ddNTP,通常用不同的荧光染料标记)和热稳定性DNA聚合酶。首先,测序引物与 PCR 产物杂交,并在 PCR 过程中由 DNA 聚合酶延伸。 ddNTP 在延伸过程中被整合到 DNA 链中,从而终止序列上任何位置的链延伸。随后的毛细管电泳根据大小分离 DNA 链,并使用每种荧光染料识别终止的核苷酸。它被认为是突变分析的标准方法,可以确定整个序列并识别未知突变。肿瘤样本中低频率(< 10%)的突变无法使用桑格测序来确定。
抽象的原始皮肤是皮革制革厂中使用的常见主要材料。作为一种有机材料,皮革有微生物损害微生物的风险。尽管制革厂过程使用多种化学物质和动作来防止其损坏,但皮革的较长储存时间可以为微生物提供重生的机会。该研究旨在通过微生物的活性引起的微观结构条件了解监测器蜥蜴皮革质量。通过细菌计数评估皮革的各种储存时间(1、2、3和4年)。根据结果,皮革中的细菌计数和氮含量显着增加(p <0.05),而皮革储存两年后的pH值和热稳定性显着下降。因此,储存时间越长,皮革质量就越低。
PAM ISMAIL是明尼苏达大学食品科学与营养系教授。 她是植物蛋白创新中心的创始人兼主任。 Ismail博士在食品化学研究方面拥有20多年的经验,这些研究重点是分析化学,蛋白质化学,化学和生物活性食品成分的命运。 她的研究重点是化学表征和增强功能,安全性,生物利用度和食物蛋白的生物活性性,此前遵循新颖的加工和分析方法。 她的小组目前正在研究改善食品蛋白的功能,热稳定性和生物活性的方法,以及在酶促和其他天然蛋白质修饰方法后降低过敏反应的方法。 她是“杰出教学奖”和“杰出教授奖”的获得者。在牛津布鲁克斯大学获得食品科学博士学位后,她在普渡大学食品科学系任职博士学位。PAM ISMAIL是明尼苏达大学食品科学与营养系教授。她是植物蛋白创新中心的创始人兼主任。Ismail博士在食品化学研究方面拥有20多年的经验,这些研究重点是分析化学,蛋白质化学,化学和生物活性食品成分的命运。她的研究重点是化学表征和增强功能,安全性,生物利用度和食物蛋白的生物活性性,此前遵循新颖的加工和分析方法。她的小组目前正在研究改善食品蛋白的功能,热稳定性和生物活性的方法,以及在酶促和其他天然蛋白质修饰方法后降低过敏反应的方法。她是“杰出教学奖”和“杰出教授奖”的获得者。在牛津布鲁克斯大学获得食品科学博士学位后,她在普渡大学食品科学系任职博士学位。
在药物研发中,为了使药物既有效又安全,化合物与正确靶标的选择性结合非常重要。为实现这一点,药物必须出现在作用部位并以高特异性占据预期靶标。药物开发中的高流失率通常归因于概念验证研究缺乏效率或非靶标引起的毒性。1 效率低下的主要原因是预期作用部位的靶标参与不足以及对化合物作用方式的理解不完全。专利的细胞热位移分析 (CETSA) 被开发用于在生理相关环境中确定化合物与其蛋白质靶标的靶标参与。2 CETSA 是一种无标记方法,它根据加热导致的变性和聚集来评估活细胞和组织中蛋白质的热稳定性。可以对加热后上清液中剩余的可溶性蛋白质进行量化,并生成蛋白质的热熔化曲线。化合物结合通常会影响蛋白质的热稳定性,熔化曲线的变化表明细胞靶标参与(图1)。该方法适用于所有不同类型的模态,例如激动剂、拮抗剂、变构结合剂、活性位点结合剂和蛋白质 - 蛋白质相互作用干扰剂。到目前为止,CETSA 技术平台有三种主要格式。它们都共享相同的原理检测方案,但在热休克后用于蛋白质定量的方法不同(图2)。其中两种格式,CETSA Classics 和 CETSA High Throughput (HT) 都是有针对性的 CETSA 方法,用于使用抗体进行量化以确认单个已知蛋白质靶标的靶标参与。第三种格式,CETSA MS,是蛋白质组范围的细胞靶标参与测量
沿温度梯度热扩散的离子热电材料是最近出现的一类新型材料。在这些材料中,离子的热扩散产生的热电压比暴露在相同温度梯度下的经典电子热电材料高几个数量级。电解质如今被视为热电材料,因为它们成本低、热导率低、热稳定性和电稳定性高。[5] 另一个主要优点是工作温度低于 250°C,这包括 50% 的所有产生废热。[6] 沿热梯度热扩散的离子无法进入电子电路,因此会积聚在电极/电解质界面,形成双电层。在对理想超级电容器进行热充电时,存储的电能与热电压二次相关:
摘要近年来,由于其独特的特性,例如出色的安全性,明显的层间间距,环境灵活性,较大的表面积,高电导率和出色的热稳定性,二维MXENES已成为可充电电池的潜在电极材料。这篇综述研究了MXENES及其复合材料(混合结构)领域的所有最新进展,这些进展对于高级可充电电池的电化学应用很有用。本次评论的主要重点是金属离子电池和锂 - 硫磺(Li – S)电池。旨在表明,合成和表征的最新改进,对层间距离的更大控制以及新的Mxene复合材料的结合在一起,共同充当了储能应用的新兴和潜在方法。
近年来,人们广泛研究了陶瓷制造过程中某些废料的回收利用,以从经济上证明与陶瓷制造相关的高昂成本是合理的,并避免这些废物被填埋[1-5]。多孔陶瓷具有许多应用领域,包括催化剂载体、熔融金属过滤器、高温隔热材料、电化学反应器中的隔板、生物反应器和骨组织工程、轻质夹层结构、水净化微孔膜和废水处理。此外,多孔陶瓷预制件还用于制备陶瓷-聚合物和陶瓷-金属复合材料[6]。陶瓷在许多应用领域的性能优于聚合物和金属竞争对手,因为它们的密度相对较低,这意味着重量轻、耐腐蚀(包括热腐蚀液体和气体)、热稳定性、化学惰性和