本研究的目的是现场检测使用激光粉末床熔合 (LPBF) 增材制造工艺制造的金属部件中的缺陷形成情况。这是一个重要的研究领域,因为尽管节省了大量成本和时间,但航空航天和生物医学等精密驱动型行业仍不愿使用 LPBF 制造安全关键部件,因为该工艺容易产生缺陷。LPBF 和增材制造中的另一个新兴问题与网络安全有关——恶意行为者可能会篡改工艺或在部件内部植入缺陷以损害其性能。因此,本研究的目标是开发和应用一种物理和数据集成策略,用于在线监控和检测 LPBF 部件中的缺陷形成情况。实现此目标的方法是基于将现场熔池温度测量(孪生)与基于图论的热模拟模型相结合,该模型可以快速预测部件中的温度分布(热历史)。该方法的创新之处在于,通过现场熔池温度测量逐层更新计算热模型提供的温度分布预测。这种数字孪生方法用于检测使用商用 LPBF 系统制造的不锈钢 (316L) 叶轮形部件中的缺陷形成。生产了四个这样的叶轮,模拟了 LPBF 部件中缺陷形成的三种途径,即:加工参数的变化(工艺漂移);机器相关故障(镜片脱层)以及故意篡改工艺以在部件内部植入缺陷(网络入侵)。使用 X 射线计算的
开发了一种激光粉末床熔合 (LPBF) 策略,用于在 Inconel 718 结构中制造具有高尺寸精度的小通道。特别关注了等效直径和形状因子等表面特性。通过系统地改变 LPBF 轮廓参数以及通道横截面,优化了外表面的固有表面质量。相对于构建平台,分析了上皮、垂直和下皮表面的平均算术粗糙度 Sa。同时,研究了构建方向对直径为 500 至 1000 毫米、构建方向从水平 (0 ) 到垂直 (90 ) 的通道上内部自由形状表面质量的影响。通过使用优化的液滴形横截面(该横截面与构建倾角呈函数关系),可以显著提高尺寸精度。对通道不同区域表面粗糙度的角度分析证实,这种改进的横截面减少了由于向内熔化而显示出特别高表面粗糙度的通道区域的比例。结合优化的轮廓处理策略,改进的通道在倾角低于 45° 时具有最佳性能。形状因子从 0.4 增加到几乎 0.9,即接近理想的圆形。2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:薄壁结构因其在航空航天工程中用作轻型部件而备受关注。通过增材制造 (AM) 制造这些部件通常会产生不希望的翘曲,这是因为制造过程中会产生热应力,并且部件的结构刚度会降低。本研究的目的是分析激光粉末床熔合 (LPBF) 制造的几个薄壁部件的变形。进行实验以研究由 LPBF 制造的薄壁结构在几个开放和封闭形状中对不同设计参数(例如壁厚和部件高度)的翘曲敏感性。使用 3D 扫描仪测量平面外位移方面的残余变形。此外,首先校准内部有限元软件,然后使用它来增强原始设计,以尽量减少 LPBF 打印过程引起的翘曲。结果表明,开放的几何形状比封闭的几何形状更容易翘曲,并且垂直加强筋可以通过增加刚度来减轻部件翘曲。
图 3 – 传统、L-PBF 和 L-DED 处理的 Fe-Co 的屈服强度和延展性特性与特定工艺的名义冷却速率的关系图。
查尔姆斯理工大学摘要:尽管激光粉末床熔合 (LB-PBF) 作为一种增材制造技术具有突出地位,但获准用于该工艺的合金数量仍然有限。在传统制造中,铁合金是最常见的合金组,主要由普通碳钢和低合金钢组成。然而,在 LB-PBF 中,铁合金的生产仅限于少数奥氏体/沉淀硬化不锈钢和工具钢。普通碳钢和低合金钢的缺乏源于碳在加工过程中的负面影响,这会促进成品材料内开裂缺陷的形成。因此,为了扩大 LB-PBF 的机会,必须了解如何加工这些含碳铁合金。本研究探讨了各种普通碳钢(0.06 至 1.1 wt.% C)和低合金钢(4130、4140、4340 和 8620)的 LB-PBF 加工性能和微观结构。微观结构分析发现,成品试样由回火马氏体组成,这种回火马氏体是由于 LB-PBF 过程中的初始快速冷却和随后的固有热处理而形成的。此外,在 C 含量≥0.75 wt.% 的合金中观察到残余奥氏体的存在,这是由于马氏体转变温度降低,导致冷却至室温时部分奥氏体未转变。就缺陷而言,成品试样内的孔隙率可能与所选的体积能量密度 (VED) 和合金的碳含量有关。在低 VED 下,试样含有与未熔合孔隙有关的大而不规则的孔隙,而在高 VED 下,试样含有与小孔隙有关的圆形中等大小的孔隙。就碳含量而言,发现增加碳量可减少低 VED 下的未熔合孔隙的数量,而增加高 VED 下的小孔隙的数量。未熔合孔隙的减少是由于熔池的润湿性和流动性改善,而小孔隙的增加是由于碳含量较高导致熔池深度增加。除了孔隙之外,在一些普通碳钢和低合金钢中还观察到冷裂纹,形成于硬度超过某些阈值的试样中:Fe-C 合金为 ≥425 HV,4140 合金为 >460 HV,4340 合金为 >500 HV。增加 VED 或激光功率会降低样品硬度,因为这两个因素都会增强 LB-PBF 的固有热处理。这意味着如果使用足够大的 VED 或激光功率,就可以避免(某些合金中的)开裂。碳含量还会影响成品样品的硬度,从而影响开裂敏感性,这一发现解释了为什么低碳合金(<0.43 wt.% C)在任何测试的 VED 下都不会出现开裂,而高碳合金(≥0.75 wt.% C)会在任何测试的 VED 下出现开裂。% C) 在每次测试的 VED 中都出现开裂。利用这些发现,建立了加工窗口,无需预热构建板即可生产出高密度 (>99.8%)、无缺陷的普通碳钢和低合金钢样品。
镍基高温合金是能源和航空航天领域高温应用必不可少的材料。这些材料的增材制造 (AM) 可以为高温部件的设计、功能和制造带来显著益处。然而,由于 AM 制造过程中的开裂问题,只有少数材料经过了尝试和鉴定。本文对 Haynes 282 通过激光粉末床熔合 (LPBF) 的可加工性和性能进行了初步评估,这是一种相对较新的镍基高温合金,其性能优于许多传统的锻造高温合金。结果表明,通过全密度 LPBF 可以制造无裂纹的 Haynes 282。尽管具有明显的各向异性,但其室温下的机械性能超过了参考材料在制造和热处理条件下的性能。 800 ◦ C 下的机械性能表明,LPBF 热处理的 Haynes 282 的屈服强度与参考材料相当,但延展性显著降低。良好的应力断裂性能也表明 Haynes 282 是增材制造的理想选择,特别是如果可以针对增材制造的成品微观结构重新设计热处理工艺。
1996 年 1 月 1 日之后发布的报告通常可通过美国能源部 (DOE) SciTech Connect 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ DOE 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 http://www.osti.gov/contact.html
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
增材制造 (AM) 工艺通过逐层沉积材料来构建机械零件 [1] 。在金属 AM 工艺中,粉末床熔合 (PBF) 的应用最为广泛 [2] 。PBF 方法使用激光或电子束将粉末床顶部的金属粉末层与下面的层熔合在一起。激光 PBF (LPBF) 的一个众所周知的应用是通用电气开发的尖端航空推进发动机内的燃油喷嘴,其中约 20 个零件的传统设计减少为单个 LPBF 构建 [3] 。虽然这些进步意义重大,但目前工业中的 LPBF 构建实践通常仅限于单一合金。相比之下,定向能量沉积工艺已用于制造金属复合材料,可用于生产需要多种材料的高度工程化机械零件 [4] 。 ODS 合金是一种金属基复合材料,其中纳米级氧化物可抑制高温下的晶粒生长,从而提供高温力学性能和高抗蠕变性[5]。ODS 铁素体合金作为耐辐射包层和结构材料的替代品,受到核工业的广泛关注。氧化物的小尺寸和高数密度导致了大量复合界面,这被认为可以消除点缺陷,防止缺陷在失效前聚集[6]。然而,由于颗粒的浮力,ODS 合金的铸造具有挑战性[7]。因此,传统的粉末冶金法用于生产 ODS
I. 构建几何形状对增材制造 316L 零件微观结构发展的影响 A. Leicht、U. Klement、E. Hryha Mater. Charact. 143 (2018) 137–143 II. 零件厚度对激光粉末床熔合制造 316L 零件微观结构和力学性能的影响 A. Leicht、C. Pauzon、M. Rashidi、U. Klement、L. Nyborg、E. Hryha 已提交出版 III. 工艺气体和扫描速度对 L-PBF 制造的薄 316L 结构的性能和生产率的影响 C. Pauzon、A. Leicht、U. Klement、P. Forêt、E. Hryha 已提交出版 IV.扫描旋转对激光粉末床熔合生产的 316L 零件微观结构发展和力学性能的影响 A. Leicht、CH Yu、V. Luzin、U. Klement、E. Hryha Mater。Charact。163 (2020) 110309 V. 工艺参数对激光粉末床熔合生产的 316L 零件微观结构、抗拉强度和生产率的影响 A. Leicht、M. Rashidi、U. Klement、E. Hryha Mater。Charact。159 (2020) 110016 VI. 通过增加层厚度提高 316L 激光粉末床熔合的生产率:对微观结构和力学性能的影响 A. Leicht、M. Fischer、U. Klement、E. Hryha、L. Nyborg 已提交出版