1 湖南科技大学机电学院,湖南省高效轻合金构件成形技术与抗损伤评价工程研究中心,湘潭 411201 2 中南大学,国家级高强度结构材料技术重点实验室,长沙 410083 3 杭州电子科技大学材料与环境工程学院,先进磁性材料研究所,杭州 310018 4 长春工业大学材料科学与工程学院,先进结构材料教育部重点实验室,长春 130012 * 通讯作者:liuyang7740038@163.com (YL); federer.song@163.com (YS); songxiaolei@ccut.edu.cn (XS)
摘要:采用快速熔化和凝固的快速传热增材制造方法生产的合金零件与传统工艺制成的材料相比,具有不同的微观结构、特性和性能。本研究比较了采用粉末床熔合工艺制备的SS316L与冷轧SS316L的耐腐蚀和氧化性能。此外,对不锈钢表面氧化膜进行了全面评估,因为该膜对抗腐蚀和氧化性能的影响最大。研究了热处理对增材制造SS316L耐腐蚀和氧化性能的影响。SS316L具有由亚晶胞形成的微观结构,其中局部浓缩的合金元素形成稳定的钝化膜。因此,它比传统的冷轧材料具有更高的耐腐蚀和抗氧化性能。然而,已证实热处理会去除亚晶胞,从而导致耐腐蚀和氧化性能的下降。
阵列中每台激光器的热通量都会根据其内部间距对熔池的整体形状/尺寸产生影响,即基于叠加原理和每台激光器温度场之间的热串扰。通常,由于热量分布在更大的表面积上,随着内部间距的增加,宽度会增加,但深度则呈现相反的趋势,即热量渗透到粉末床中会减少。此外,熔池尺寸(深度和宽度)
摘要:Ti6Al4V 合金具有高比机械性能、优异的耐腐蚀性和生物相容性等独特特性,是一种适用于各种工程应用的理想轻质结构金属。本文详细介绍了选择性激光熔化 Ti6Al4V 零件的机械性能,以及影响最终性能的主要加工和微观结构参数。通过将 Ti6Al4V 零件的微观结构特征与最终机械性能联系起来,提供基础知识,包括拉伸强度、拉伸应变、抗疲劳性、硬度和磨损性能。本文还对激光粉末床熔合与传统加工方法进行了比较。本文还批判性地讨论了成品 Ti6Al4V 零件中存在的缺陷及其对机械性能的影响。文献中的结果表明,当考虑植入物和航空航天应用标准的最低值时(例如 ASTM F136-13;ASTM F1108-14;AMS4930;AMS6932),典型的激光粉末床熔融 Ti6Al4V 拉伸性能(屈服强度 >900 MPa 和拉伸强度 >1000 MPa)是足够的。
激光粉末床熔合中的功能分级材料成分有可能制造具有定制性能的复杂组件。实现这一目标的挑战在于,当前的激光粉末床熔合机技术仅设计用于处理粉末状原料。本研究介绍了一种用于激光粉末床熔合的多原料材料打印方法。利用胶体雾化,在激光粉末床熔合过程中,碳化钨纳米颗粒成功沉积在 316L 不锈钢粉末床上。通过这种方式,在惰性处理室气氛下,一定量的碳化钨纳米颗粒均匀分散在粉末床上。结果,用这种方法打印的样品强度有所增加。同样,胶体介质在产生的微观结构中也起着重要作用。它导致形成一致稳定的熔池和坚固的晶体结构。给出了成功分散大量纳米颗粒的建议。此外,还介绍并讨论了材料雾化在激光粉末床熔合中的应用前景。
金属增材制造部件中的残余应力是一个众所周知的问题。它会导致样品在从构建板上取出时变形,并且对疲劳产生不利影响。了解打印样品中的残余应力如何受到工艺参数的影响对于制造商调整工艺参数或部件设计以限制残余应力的负面影响至关重要。在本文中,使用热机械有限元模型模拟增材制造样品中的残余应力。材料的弹塑性行为通过基于机制的材料模型来描述,该模型考虑了微观结构和松弛效应。通过将模型拟合到实验数据来校准有限元模型中的热源。将有限元模型的残余应力场与同步加速器 X 射线衍射测量获得的实验结果进行了比较。模型和测量的结果显示残余应力场具有相同的趋势。此外,结果表明,随着激光功率和扫描速度的改变,所产生的残余应力的趋势和幅度没有显著差异。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要 电子束粉末床熔合制造部件是一种复杂的增材制造工艺,在航空航天和许多工业过程中具有广泛的优势。它降低了成本,并且对粉末粒度有更大的要求。与激光粉末床熔合工艺相比,这具有更高的质量沉积速率,从而缩短了生产时间。粉末床制造工艺通常会导致沿构建方向形成柱状晶粒结构,从而产生具有各向异性的物理和机械性能的组件。这是限制该技术应用的主要问题。为了促进等轴晶粒的形成,以及细化柱状形态和消除各向异性,需要考虑工艺条件和孕育剂或异质成核位点的存在的作用。在本研究中,通过添加氮化钛孕育剂,利用熔化策略和可变工艺参数促进铁素体不锈钢中柱状晶粒向等轴晶粒的转变。我们发现,热梯度 (G) 与凝固速率 (R) 之比 (G/R 比) 控制着晶粒形态和纹理:低 G/R 比已被证明可以促进等轴晶粒的形成。研究了这种转变的工艺条件。在 Freemelt One 机器中打印单线轨迹后对样品进行分析,然后借助光学显微镜进行研究,以确定导致柱状晶粒成功转变为等轴晶粒的机器参数组合。研究得出结论,在低热梯度、高扫描速度和低面积能量的条件下,等轴晶粒的比例有所增加。最终,需要进一步研究以确定促进铁素体不锈钢从柱状晶粒转变为等轴晶粒的确切工艺参数。未来的研究人员可以使用这项研究的结果来创建这种钢种的凝固图,并帮助行业定制铁素体不锈钢中的特定纹理,以实现所需的微观结构和机械性能。关键词:增材制造、E-PBM、孕育、工艺参数、TiN、CET
许多增材制造 (AM) 技术都依赖于粉末原料,这些原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流动和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,快速蒸发的影响通过额外的机械和热界面通量来整合。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
图 3:A) 基于单珠 (SB) 实验的每种激光功率和激光速度组合的熔化行为与预测的熔化行为叠加。B) 连续单珠的宽度和标准偏差与预测的熔化行为叠加。对于这两个图,预计绿色区域将完全熔化,黄色区域将部分熔化,蓝色区域将不熔化。
增材制造金属的机械性能各向异性有几个物理原因。这些原因包括但不限于方向依赖的晶粒和相形态、晶体结构、定向孔隙率/缺陷以及与熔池、分层微观结构相关的异质性。所有这些在大多数增材制造工艺中都很普遍,很难区分它们在机械各向异性中的作用。本综述重点介绍那些试图或合理地隔离其中一个或两个来源的研究,而不是简单地报告机械性能的趋势。这不是一份涵盖所有增材工艺或机械性能的详尽综述;主要评估的是激光粉末床熔合 (LPBF) 金属和拉伸试验结果(模量、屈服强度、极限拉伸强度、伸长率和断裂表面分析)。总之,LPBF 合金的各向异性拉伸性能的主要来源是晶体结构、各向异性微观结构形态、熔合缺陷不足和熔池宏观结构。在各向异性微观结构中,与相和特征(例如晶界 α、沉淀物等)的优先分布相比,拉长的晶粒似乎是次要的。各向异性模量和屈服强度主要由晶体织构引起。晶体塑性模拟支持了这一点。各向异性伸长主要由各向异性微观结构形态、未熔合缺陷和熔池宏观结构引起。支持这一点的证据来自遵循这些特征的断裂表面。熔池宏观结构是最难通过实验从其他各向异性源列表中分离出来的。一组激光工艺参数和合金的发现并不具有指导意义。在将拉伸各向异性的原因与特定来源联系起来之前,必须对上述来源进行表征。需要制定表征和操纵晶体织构、孔隙率、晶粒和相形态以及熔池宏观结构的策略,以更好地理解和控制 AM 金属中的机械各向异性。