附录 C 1. 斯坦福研究所图表 ...................................................................................... 326 2. PWA 材料图表 .............................................................................................. 328 3. 公式(发动机参数相互关系) ...................................................................... 346 4. 危险区域分类 ............................................................................................. 354 5. 空气滤清器选择指南清单 ...................................................................... 355 6. 空气/油冷却器选择指南清单 ...................................................................... 358 7. 气体燃料特性 ............................................................................................. 363 8. 液体燃料特性 ............................................................................................. 370 9. 符号列表 ............................................................................................. 372 10. 换算系数 ............................................................................................. 375 11. 入口水冷却(雾化) ............................................................................. 380 12. 整体 A 加权声级计算 ............................................................................. 383
1.本图仅用于展示系统管道概念。安装人员负责根据当地法规安装所有设备和细节。2.防冻、非饮用传热流体仅应用于太阳能热交换器回路。切勿将防冻溶液引入太阳能热交换器以外的任何其他连接。3.如果冷水供水管线上有止回阀,则必须在此管道系统内止回阀和太阳能热水器冷水入口之间安装一个适合饮用水的热膨胀罐。4.如果生活热水温度高于 120F,建议使用防烫混合阀。5.所有循环器的上游必须安装直径至少为 12 的直管。6.在接通备用热源电源之前,请确保水箱中的空气已完全排出。7.上图所示的水力锅炉管道中的循环器应具有集成流量检查装置,或者使用带有外部弹簧式止回阀的库存泵。
如果任何通道发生低报警情况,模块将处于 2 级显示模式;条形图和数字显示屏将仅显示处于报警状态的通道。如果多个通道处于报警状态,将显示报警级别最高的通道,并且处于报警状态的任何其他通道的通道 LED 将闪烁。低报警 LED 将闪烁,低报警继电器改变状态,电流输出改变以指示报警。如果信号再次降至低设定点以下,则相应的报警继电器(如果编程为非锁存操作)将返回其正常状态,如果编程为锁存操作,则保持不变。电流输出将返回到正常输出水平。只要显示具有报警条件的通道,低报警 LED 仍将亮起。
引言 2-1 2.1 固定翼飞机应用的燃气涡轮发动机模拟 2-1 2.1.1 初步设计概要 2-3 2.1.1.1 燃气涡轮概念设计流程 2-4 2.1.1.2 任务发动机或循环选择 2-7 2.1.1.3 控制系统概念定义/评估 2-10 2.1.1.4 燃气涡轮循环设计方法 – 数值优化 2-13 2.1.2 设计和验证概要 2-16 2.1.2.1 技术风险评估 2-16 2.1.2.2 硬件在环 2-22 2.1.2.3 飞机模拟 2-25 2.1.2.4 安装对整台发动机的影响 2-29 2.1.2.5 统计分析 2-32 2.1.3 系统设计和开发概要 2-36 2.1.3.1 性能 2-37 2.1.3.2 可操作性 2-55 2.1.3.3 寿命评估和耐久性 2-60 2.1.3.4 恶劣天气 2-65 2.1.3.5 控制 2-67 2.1.4 认证后和在役支持概要 2-72 2.1.4.1 用户环境 2-73 2.1.4.2 发动机模型的需求和用户要求 2-74 2.1.4.3 发动机健康监测和故障诊断 2-75 2.1.5 固定翼应用的参考资料 2-91 2.2 旋翼飞机应用的燃气涡轮发动机模拟 2-93 2.2.1 历史 2-93
引言 2-1 2.1 固定翼飞机应用的燃气涡轮发动机模拟 2-1 2.1.1 初步设计概要 2-3 2.1.1.1 燃气涡轮概念设计流程 2-4 2.1.1.2 任务发动机或循环选择 2-7 2.1.1.3 控制系统概念定义/评估 2-10 2.1.1.4 燃气涡轮循环设计方法 – 数值优化 2-13 2.1.2 设计和验证概要 2-16 2.1.2.1 技术风险评估 2-16 2.1.2.2 硬件在环 2-22 2.1.2.3 飞机模拟 2-25 2.1.2.4 安装对整台发动机的影响 2-29 2.1.2.5 统计分析 2-32 2.1.3 系统设计和开发概要 2-36 2.1.3.1 性能 2-37 2.1.3.2 可操作性 2-55 2.1.3.3 寿命评估和耐久性 2-60 2.1.3.4 恶劣天气 2-65 2.1.3.5 控制 2-67 2.1.4 认证后和在役支持概要 2-72 2.1.4.1 用户环境 2-73 2.1.4.2 发动机模型的需求和用户要求 2-74 2.1.4.3 发动机健康监测和故障诊断 2-75 2.1.5 固定翼应用的参考资料 2-91 2.2 旋翼飞机应用的燃气涡轮发动机模拟 2-93 2.2.1 历史 2-93
摘要 - 在本文中,我们提出了一种新的基于神经网络的方法,以控制燃气轮机以在高负载下进行稳定操作。我们使用了复发性神经网络(RNN)和增强学习(RL)的组合。我们首先使用RNN来确定燃气轮机动力学的最小状态空间。基于此,我们通过标准RL方法确定最佳控制策略。我们进入一个所谓的复发控制神经网络(RCNN),该网络将这两个步骤结合到一个集成的神经网络中。我们的方法具有一个优势,即通过使用神经网络,我们可以轻松地处理燃气轮机的高尺寸,并且由于RNN的高系统认同质量与一般而言,通常只有有限的可用数据。我们在示例性的燃气轮机模型上演示了所提出的方法,与标准控制器相比,它强烈改善了性能。
对于确定保护任何特定设施的气体检测头的数量和位置,没有绝对的规则。在所有可能泄漏气体和需要检测有害气体的区域仔细放置传感器。在需要增强保护或可靠性的地方使用冗余。轻气体(如甲烷)往往会上升,而重气体(如丙烷)往往会积聚在低洼区域。向了解被检测气体特性、空气流动模式和设施的专家寻求建议。使用常识并参考讨论您所在行业一般准则的各种出版物。
5.0 无控制技术 ...............5-1 x 5.1 湿式控制 .................5-5 5.1.1 过程描述 ........5-5 5.1.2 湿控制的适用性 ....5-8 5.1.3 影响湿式控制性能的因素 ...........5-8 5.1.4 使用 x 湿式控制可实现的 NO 排放水平 ...........5-11 5.1.5 湿式控制对 CO 和 HC 排放的影响 ............5-28 5.1.6 湿式控制对燃气轮机性能的影响 ............5-33 5.1.7 湿式控制对燃气轮机维护的影响 ............5-33 5.2 燃烧控制 ............5-36 5.2.1 稀薄燃烧和减少燃烧室停留时间 ...........5-36 5.2.2 贫油预混燃烧室 ......5-38 5.2.3 浓/熄火/贫油燃烧 .....5-59 5.3 选择性催化还原 .......5-63 5.3.1 流程描述 ..........5-63 5.3.2 SCR 对燃气轮机的适用性 5-65 5.3.3 影响 SCR 性能的因素 ..5-72 5.3.4 使用 SCR 可实现的 NO 减排 x 效率 .......5-73 5.3.5 SCR 的处置注意事项 ...5-73 5.4 与 SCR 结合使用的控件 ...5-74 5.5 在 HRSG 应用中添加管道燃烧器的影响 ..............5-77 5.6 替代燃料 ............5-83 5.6.1 煤制气 ...。。。。。。。5-83 5.6.2 甲醇。。。。。。。。。。。。。。5-84 5.7 选择性非催化还原 ......5-87 5.8 催化燃烧 ...........5-88 5.8.1 过程描述 .........5-88 5.8.2 适用性 ...........5-88 5.8.3 开发状态 .........5-88 5.9 海上石油平台应用 .....5-91 5.10 第 5 章参考资料 ......。。。5-92
5.0 NO 控制技术 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 5.1.5 湿式控制对 CO 和 HC 排放的影响 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36 5.2.2 贫燃预混燃烧器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-73 5.4 与 SCR 结合使用的控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-87 5.8 催化燃烧 . ...
GE 推出了发电行业中第一款采用发动机外中间冷却技术并使用外部热交换器的现代量产燃气轮机 LMS100™。这款燃气轮机提供了当今行业中最高的简单循环效率,紧随 GE 推出最高联合循环燃气轮机系统 MS9001H 之后。LMS100™ 系统结合了框架和航空衍生燃气轮机技术,用于燃气发电。这种结合为客户提供了循环能力,不会影响维护,具有高简单循环效率、快速启动、高可用性和可靠性,并且安装成本低。该系统的独特之处在于在燃气轮机的压缩部分使用中间冷却,利用了燃气和空气压缩机行业广泛使用的技术。多年来,GE 和其他公司已经广泛评估了该技术在燃气轮机中的应用,尽管它从未在大型发电应用中商业化。在过去五年中,GE 已成功在 LM6000™ 燃气轮机的低压和高压压缩机之间使用了 SPRINT ® 专利喷雾中间冷却、蒸发冷却技术。GE 开发的高压比航空燃气轮机(如 GE90 ® )为将中间冷却投入生产提供了所需的技术。LMS100™ 燃气轮机中间冷却技术可提供超过 100MW 的输出功率