锂离子电池(ALIBS)有望在日益环保的叙述中提供具有成本效益和安全的能源存储。此外,减轻围绕传统液化液中关键原材料的问题加强了与这种理想的一致性。在这里,我们深入研究了佩利烯-3,4,9,10-四羧酸列酰亚胺(PTCDI)的电化学,并评估其作为abibs的有机阳极活性材料的潜力。我们发现,与有机溶剂相比,尽管有略有不同的方式,但与中等浓缩的水性电解质相比,li +可逆地(DE)li +。此外,在容量,能力保留,速率性能,库伯效率和自我释放方面的半细胞电化学性能确实令人满意,其中使用高电压锂氧化物氧化物(LMO)的概念证明是ableib,and> 70 wh kg-1(ptcdi + lmo)和一个平均水平和平均水平。1.5 V.这些发现的目的是用更稀释的水解物进一步鼓励有机氧化还原材料研发,有可能为更绿,更可持续的能源景观铺平道路。
2019-01 02/22/2019在推荐的操作模式下接受CCM模式。在遗留程序下的pkcs1.5桨叶的摄入量。2020-01 24.03.2020 Frodokem和Classic McEliece的建议,具有适用于PQC应用的合适安全参数,以及先前推荐的不对称过程。argon2ID建议基于密码的键推导。RSA键的过渡扩展,其钥匙长度从2000位到2023年底。2021-01 08.03.2021关于随机发电机的章节的修订,特别是在使用DRG.3-和NTG.1-随机生成器方面。ptg.2- Zelleneratorers不再建议用于一般目的。记录基于哈希的签名过程的标准化版本。2022-01 28.01.2022整个文本的基本编辑修订版,布局的布局。在Rich侧通道分析,QKD和种子生成中更新随机数生成器。2023-01 09.01.2023将安全水平提高到120位,更新PQ密码学区域。2024-01 02.02.2024与Quantum-SAFE密码学有关的基本重组,驳回2029年DSA的建议,接纳MLS协议。
电动汽车中的抽象电池安全性是一项全面的工程努力,需要在每个阶段进行一致的考虑,包括电池材料,电池组设计和电池管理系统(BMS)。本综述着重于锂离子电池的安全管理策略和实际应用。电池安全的管理主要包括充电和放电安全,高压安全性和热安全性。在其中,充电和排放安全管理旨在防止电池损坏或由过度充电或出院造成的安全事件。高压安全管理涉及检测绝缘断层,过电流和其他潜在风险,以防止电气危害。热安全管理确保单个电池电池,模块和电池组保持最佳的工作温度范围和均匀的温度分布,从而防止热失控。
随着社会电气化趋势,机场面临着不可避免的电动汽车(电动汽车)和电动航空潜在升高(EA)的不可避免的过渡。对于航空,短途航班首先是燃料交换到电气运输的排队。这项工作研究了Visby,瑞典的机场以及EA和EV充电对电力系统的影响。它使用了一年操作中测得的机场负载需求以及模拟的EA和EV充电配置文件。太阳能光伏(PV)和电池电池储能系统(BES)进行了建模,以分析潜在的技术 - 经济增长。用四种方式对BESS电荷和放电控制进行建模,包括新型的多目标(MO)调度,以结合自消耗(SC)增强和峰值功率。将每个模型方案进行比较的峰值剃须能力,SC速率和付款额(PBP)。还评估了BESS控件的年度退化和相关成本。结果表明,新颖的MO调度在峰顶剃须和SC方面表现良好,从而有效地减少了Bess的闲置时期。MO调度还通过名义经济参数导致电池控制最低的PBP(6。9年)。此外,对PBP的灵敏度分析表明,峰值关税显着影响BESS投资的PBP。
避免功能化会导致更好的原子经济以及毒性较小的反应性物种和副产品。这一切都会导致较低的SCI。尽管DAP具有明显的优势,但与其他常规途径相比,由此产生的材料表现不佳。与Stille制成的聚合物相比,直接芳基聚合物O e eN具有较低的分子量23,并且缺陷的患病率更高。24个同源物缺陷是由随后的链中重复自我的随后的单体而变化的。这是由芳基亲核试剂(AR - H)和DAP中的芳基电到(AR - BR)引起的,反应性更接近。Accordingly, the C – H bond must be su ffi ciently active to undergo reaction and prevent homocoupling of the dibrominated monomer – a side reaction also seen in Stille and Suzuki coupling despite highly orthog- onal reactivity of the monomers in those polymerization
夏尔默斯技术大学的生命科学系,SE412 96哥德堡,瑞典B天津工业生物技术研究所,中国科学学院,蒂安金300308,pr中国C中国生命科学学院,中国科学学院,北欧科学学院,北北方,北方,北部。深圳高级技术研究所,中国科学院,深圳518055,中国Pr中国e工程生物学主要实验室低碳工业研究所,工业生物技术学院,中国科学院,中国科学院DK2200哥本哈根,丹麦G Novo Novo Nordisk生物维护基金会,丹麦技术大学DK2800 Kongens Lyngby,丹麦
抽象背景木质纤维素生物量作为原料具有巨大的生化生产潜力。仍然,源自木质纤维素衍生的水解物的有效液化受到其复杂和异质组成的挑战,以及抑制性化合物的存在,例如呋喃醛。使用微生物联盟,其中两个专门的微生物相互补充可以作为提高木质纤维素生物质升级效率的潜在方法。结果本研究描述了由合成的木质纤维素水解物的同时抑制剂解毒和产生乳酸和蜡酯,并通过确定的酿酒酵母和抗酸细菌的糖含量的共培养物和囊杆菌baylyi adp1。A。Baylyi ADP1显示出存在于水解产物中的Furan醛的有效生物转化,即富含毛细血管和5-羟基甲基甲基甲基甲醛,并且没有与S. cerevisiae竞争的底物,从而强调了其作为同伴的潜力。此外,酿酒酵母的剩余碳源和副产品由A. Baylyi Adp1引向蜡酯的产生。与塞维西亚链球菌的单载体相比,与贝利a a a a a baylyi ADP1的共培养中,酿酒酵母的乳酸生产率约为1.5倍(至0.41±0.08 g/l/h)。结论显示,酵母和细菌的共培养可以改善木质纤维素层的消耗量以及乳酸从合成木质纤维素水解的生产力。关键词乳酸,共培养,排毒,acinetobacter baylyi adp1,酿酒酵母,蜡酯,木质纤维素高排毒能力和通过A. baylyi Adp1产生高价值产物的能力表明,这种菌株是共培养的潜在候选者,以提高酿酒酵母发酵的生产效率和经济学。
收集了有关2697种有机化学物质的水生生态毒理学的经验数据和计算机数据,以编译数据集,以评估当前质量结构活动关系(QSAR)模型和软件平台的预测能力。本文档为其创建提供了数据集及其数据管道。经验数据是从美国EPA Ecotox知识库(Ecotox)和EFSA(欧洲食品安全局)收集的,报告“ XML模式中的农药生态毒性学层的数据输入研究终点 - 数据库 - 数据库中”。仅保留了经合组织建议的藻类,水坝和鱼类的数据。使用Ecosar,Vega和Tox-Icity估计软件工具(T.E.S.T.)计算每种化学物质和六个端点中的QSAR毒性预测平台。最后,数据集用微笑,Inchikey,PKA和LOGP修改,从Webchem和PubChem收集。©2023作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
对低碳运输的追求显着增加了对锂离子电池的需求。然而,电池制造的迅速增加,没有充分考虑与其生产和材料需求相关的碳排放,这构成了在上游上游大部分排放的威胁。在本文中,开发了生命周期评估(LCA)模型,以说明26个中国各省,20个北美地区和欧洲和亚洲的19个国家 /地区的锂离子电池的摇篮到门口足迹。对已发表的LCA数据的分析显示,关键电池材料的碳排放量相关;它们对自由lib的碳足迹的总体贡献因素而异。4取决于生产路线和来源。探索了生产位置与电池制造的闸门碳足迹之间的联系,预测的中值范围在0.1至69.5 kg CO 2 -eq kWh-1中。在美国和欧洲,肯塔基州和波兰等美国领先的西方电池制造地点与中国竞争对手具有可比的碳排放,甚至超过了几个中国省份的电池制造的碳排放。对Libs碳足迹的材料和能源贡献的这种解决方案对于为政策和决策提供了必不可少的,以最大程度地减少电池价值链的碳排放量。鉴于当前的现状,锂离子电池行业的全球碳足迹预计将在未来十年内每年达到1.0 GT CO 2 -EQ。随着材料供应链的脱碳和电池生产中的节能,每年的估计值较低,估计值为0.5 GT CO 2 -EQ。
隐私增强技术的发展在减少数据交换和分析中隐私与性能之间的权衡方面取得了巨大进展。类似的结构化透明度工具可以通过提供外部审查、审计和源验证等功能对人工智能治理有用。将这些不同的人工智能治理目标视为一个信息流系统很有用,以避免部分解决方案和治理中的重大差距,因为本文中提到的人工智能治理用例所需的软件堆栈可能存在大量重叠。当将系统视为一个整体时,这些不同的人工智能治理解决方案之间的互操作性的重要性就变得清晰起来。因此,在这些标准、审计程序、软件和规范落实到位之前,将人工智能治理中的这些问题视为一个系统至关重要。123
