为例,对于健康从业人员来说,重要的是健康模型在多大程度上表明健康产品在模型中需要响应的速度。一位小组成员指出,健康产品的视野短(1年),因此他们将寻求强调是否会发生任何气候风险影响,而不是发生特定类型的气候风险。模型用户因此需要知道如何从灾难模型中受益,无论是建模健康还是人寿保险。灾难模型对物理效应进行建模的能力已经走了很长一段路。例如,CAT模型可以直接从天气数据中建模危害。他们变得越来越强大,善于建模场景。为了充分利用CAT模型的能力,最好继续寻求更好的数据,并定义和模拟相关方案。潜在的挑战包括资产与责任现金流量之间的相互作用,一般投资与基于地理位置的CAT模型重叠。随着建模的进步,对于行业模型用户来说,了解模型可以提供的服务以及需要改进的服务将是有益的。这可以通过在猫建模者和模型用户之间进行良好的对话来实现。
摘要 激光金属沉积 (LMD) 模拟对于增材制造工艺规划至关重要。本文介绍了 LMD 的 2D 加厚度非线性热模拟的计算实现,其中考虑:(i) 与温度相关的材料特性,(ii) 由于对流和辐射引起的热损失,(iii) 材料沉积过程中的几何更新,(iv) 相变和 (v) 激光与基材之间的相互作用。该实现计算与激光轨迹垂直的横切面上的温度场历史和焊珠积累的历史。材料沉积模型基于输送粉末的空间分布。本文介绍了对生长焊珠进行有效局部重新网格划分的数学和数值基础。将焊珠几何形状的数值估计与现有文献中的实验结果进行了比较。本模型对预测焊珠宽度(误差 15%)和焊珠高度(误差 22%)具有合理的精度。此实施为内部实施,允许纳入额外的物理效应。需要进行额外的工作来考虑基材上的粒子(热)动力学,这会导致大量的材料和能源浪费,进而导致在执行的模拟中高估实际温度和熔融深度。
MEVD – 301(A) 光电子集成电路 第一单元光波导理论:波导理论:一维平面波导、二维波导、超越方程、波导模式、模式截止条件。 第二单元光波导制造和特性:波导制造:沉积薄膜;真空沉积和溶液沉积、扩散波导、离子交换和离子注入波导、III-V 化合物半导体材料的外延生长、通过湿法和干法蚀刻技术塑造波导。波导特性:表面散射和吸收损耗、辐射和弯曲损耗、波导损耗测量、波导轮廓分析。 第三单元光耦合基础:横向耦合器。棱镜耦合器。光栅耦合器。光纤到波导耦合器。光波导之间的耦合。定向耦合器。定向耦合器的应用。单元 IV 导波调制器和开关:光调制器中使用的物理效应:电光效应、声光效应和磁光效应。波导调制器和开关。单元 V 半导体激光器和探测器:激光二极管。分布式反馈激光器。集成光学探测器。单元 VI 集成光学的最新进展:导波设备和应用的最新技术,例如光子开关、可调谐激光二极管、光学集成电路。文本/参考文献 1. T Tamir,《导波光电子学》,Springer-Verlag,1990 年 2. R Sysm 和 J Cozens,《光导波和设备》,McGraw-Hill,1993 年
通过大脑活动过程中产生的信号[10]。BCI的目的是建立人脑与计算机之间的通信链路,它提供了一种不使用肌肉将脑电波转化为物理效应的方法[11]。在BCI技术诞生的几十年里,脑电图(EEG)信号分类方法的研究一直是BCI技术不断发展的驱动力。EEG是BCI系统中的一种非侵入式采集方法[1]。它通过将电极放置在头皮上来检测微弱的EEG信号,并记录脑神经活动过程中电信号的变化。然而,由于EEG在穿过大脑皮层到头皮时会大大减弱,提取出的信号的信噪比极低,增加了后续特征提取和分类的难度[13]。传统的分类方法很难找到很好区分和代表性的特征来设计具有优异性能的分类模型。然而,近年来,深度学习方法在图像和语音领域取得了巨大的成功,例如良好的泛化能力以及对数据特征的逐层自动学习[12]。本研究创建了一个可以识别和自动提取脑电信号特征的卷积神经网络,并使用来自同一公共数据库的数据比较了传统特征提取和分类方法的准确性。我们在这个项目中使用了PhysioNet脑电数据,该数据由109名受试者的1500多个一分钟和两分钟的脑电图记录组成。我们的工作目标是通过检测从八个头皮通道获得的脑电活动来探索快速傅里叶变换(FFT)信号分析技术,以区分睁眼(EO)和闭眼(EC)两种状态。
所研究的 LCLC 是色甘酸二钠 (DSCG) 的水溶液,这种材料的商品名为“色甘酸”或“色甘酸钠”,是预防过敏和哮喘相关症状的药物中的活性成分。2 在水中,DSCG 分子面对面堆叠,使其疏水核心免受极性环境的影响。这种自组装产生细长的圆柱形聚集体,直径约 2 纳米,堆叠距离为 0.34 纳米,这使它们类似于双链 DNA (dsDNA)。然而,dsDNA 是手性的,而 DSCG 分子不是,并且没有沿聚集体轴的持续扭曲。这种分子尺度的差异在宏观层面上表现出色。在水溶液中,dsDNA 分子相对于彼此扭曲,形成所谓的胆甾型液晶,其宏观螺距在微米级。分子手性和宏观手性之间微妙的关系仍是当前研究的课题。3 相反,水中的非手性 DSCG 聚集体彼此平行排列,形成具有优选方向 n ̂ 的镜像对称向列液晶,该方向称为指向矢。手性分子的手性堆积随处可见,而非手性分子的手性堆积却很少见。非手性分子形成的液晶的宏观镜像对称性破缺需要特殊的空间限制。Charles-Victor Mauguin 在巴黎参加了 Pierre Curie 关于物理效应对称性的讲座后,萌生了探索晶体学和液晶的想法,并
为了提高超大规模集成器件(VLSI)的性能,电路小型化是研究人员面临的巨大挑战[1-3]。事实上,将MOSFET尺寸缩小到纳米级也会带来一些问题。例如,功耗增加以及MOSFET沟道中电场增大可能导致势垒破裂,从而产生更大的漏电流,这可能会损坏器件。随着技术的进步,CMOS已经可以制造出来[4]。然而,减小MOS晶体管尺寸会导致一些基本的物理效应:短沟道效应[5]、栅极氧化层和高场效应[6,7]。这些问题促使人们探索具有更大可扩展性潜力的后续技术,如单电子器件(SET)技术[8-11]。SET最近因其纳米级超低功耗而备受关注[12-16]。尽管 SET 具有这些有趣的特性,但它仍存在集成限制。主要问题是 SET 在室温下运行需要极小的岛容量,因此实际上意味着室温下运行的岛尺寸小于纳米 [17]。单电子元件的第二个主要问题是背景电荷的随机性。事实上,绝缘环境中捕获的单个带电杂质会使岛极化,在其表面产生 e 数量级的镜像电荷。该负载可有效地从外部负载中减去 [18]。SET 与 CMOS 技术的混合已成为下一代超小型 [19-21]、低功耗、高速纳米器件的有希望的候选者。为了了解基于 SET 的电路的特性并探索其应用,对该器件进行模拟和建模已变得非常重要 [22-25]。SET 模拟通常基于
在颗粒和准颗粒的现象学水平上,超导体(伦敦,金兹伯格 - 兰道,bcs和其他理论)中的超潮流产生机制有不同的方法。在基本场上理论层面上,我们将超流动性的本质归因于包含电磁场的计量量的物理学。在经典的力学和电动力学中,该规格电位是一个主要实体,因为它没有由其他数量定义。但是,在量子力学的框架中,我们可以定义由复杂标量场定义的量子规势。量子规势可以被视为电磁场基底态的局部拓扑非平凡的激发,其特征在于指数等于磁通量的整数数量。从普通和量子计势中产生了量规不变的有效向量电势,可以像电场和磁场一样观察到。这导致了Maxwell方程的修改:尺寸长度的常数和电磁相互作用的定位。所有这些情况都赋予了识别Supercurrent的有效向量潜力的方法。我们还考虑了电磁场的新形式与Dirac Spinor场此处介绍的物质的相互作用。这种带电的费米 - 摩擦形式的特征是两个参数。从现象观点的角度来看,这些参数源自电子电荷和质量,但总的来说,它们应由系统本身定义。当然,电磁相互作用在扩展电动力学中的定位是保守的。仅当电磁场仅由带有磁通量的Quange势势呈现电磁场时。电磁相互作用的定位可以视为量子物理效应和超导性的主要物理原因。我们相信,这将有助于阐明基础野外理论方法框架中所谓的高温超导性。在任何情况下,对电磁场的新形式的实验观察(“超导光”)是第一个需要的步骤。
为有效控制声场提供了新途径。[1–4] 除了实现负折射率、[5] 超透镜、[6,7] 全息图[8] 和声学斗篷之外,[9] 最近的进展还包括开发非互易系统、[10] 拓扑绝缘体、[11,12] 非线性、[13] 可调、[14] 编码[15] 和可编程超表面。[16] 声学超表面也被探索为模拟计算的潜在平台[17],计算机科学和人工智能的进步促进了设计程序,以实现超材料和超表面的理想特性。[18–21] 超材料也可用作探索量子概念类比的平台,如霍尔效应[22,23] 自旋特性、[24–27] skyrmions[28] 和旋转电子学。 [29] 声学超材料领域的一个发展中的分支致力于实现新型隔音系统。[30] 城市噪音污染日益严重是影响全球健康和生态环境的危险趋势之一。[31–35] 解决这个问题需要开发新的方法和材料,以实现宽带被动隔音。传统使用的系统通常以笨重的结构为代表,对建筑物和建筑物施加了严格的工程限制。[36] 噪音减轻的频率范围必须与所用材料的质量和体积相结合。此外,通风或光学透明度等一些关键特性通常与此类系统不相容。与传统的质量密度定律不同,超材料中声音的反射和衰减主要依赖于结构元素的周期性和形状,而不是它们的材料特性。超材料的一个重要选择是可以实现允许空气流动的结构。 [37–41] 各种设计包括穿孔膜、[42,43] 空间卷绕结构、[44–48] 和元笼 [49–51] 已被提出。尽管如此,尽管可实现的物理效应众多,声学超材料却很少在现实生活中得到应用。这些结构通常设计复杂,操作范围狭窄。在本文中,我们提出了一种隔音通风元室,允许光线进入内部区域。该室设计简单,便于制造和组装。同时,对材料的要求
Niels Quack 副教授 航空机械与机电一体化工程学院微系统与纳米系统 悉尼大学 电子邮件:niels.quack@sydney.edu.au 摘要:光子集成电路利用单个芯片上大量光学元件的紧密集成。随着技术的成熟,大规模集成有望释放可编程集成光学、光子加速器、神经形态计算或量子光子集成电路等新兴概念的潜力。这种多功能光子集成电路从可扩展的单个相位和幅度控制单元数量中受益匪浅,此外还有用于光谱滤波、光电检测、高速调制、低损耗光学路由和耦合以及电气路由和接口的高性能组件。在光子集成电路的材料平台中,硅脱颖而出,因为它可以利用微电子行业的优化生态系统和高性能。在光子信号控制的物理效应中,纳米力学脱颖而出,因为它具有低光损耗、低功耗、紧凑的体积和同时在宽光谱范围内运行的特点。然而,虽然微机电系统 (MEMS) 通常用于消费电子产品,但它们在光子学中的大规模集成迄今为止仍被证明具有挑战性。在本次演讲中,我将概述在将硅光子 MEMS 扩展到大型电路方面取得的最新成就。我将总结基于 IMEC 先进的标准化硅光子 iSiPP50G 平台的 MEMS 集成,该平台是我们在欧洲 H2020 项目 morphic 中开发的。我们的晶圆级技术平台包括通过后处理实现的 MEMS 发布、通过晶圆键合实现的晶圆级密封以及通过倒装芯片键合和光纤连接实现的电气和光学接口。我将介绍使用 MEMS 可调环形谐振器的 MEMS 可调耦合器、开关、移相器和光谱控制的实验结果,并概述我们如何通过集成纳米机电压电执行器进一步扩展可编程光子学。我们的设备工作时驱动电压通常低于 30V,占用面积小于 100 x 100 μm2,插入损耗低至 < 0.3 dB,每台设备的电耗低至 1 nW,响应时间为 μs。我们在标准硅光子学中同时进行了低损耗、紧凑占用面积、宽带响应、低功耗和快速 MEMS 的里程碑式实验演示,使我们的技术特别适合需要超大规模光子集成的新兴应用,例如光子学计算或可编程光子学。
光纤传感在油气井中的应用。光纤传感有可能彻底改变石油和天然气行业的油井和油藏监测。光纤传感器的被动特性、经济高效的安装潜力以及沿光纤整个长度进行密集分布测量的可能性带来了诸多好处。使用安装在油气井中的光纤传感器获取的信息有助于提高效率、安全性和最终采收率。各种光纤传感器能够测量温度、压力、化学成分、应变和声学等物理效应。合适的数据基础设施和将这些测量结果转化为有价值信息的处理能力是任何传感系统的关键要素。基础由井中合适的光纤传感器和地面上的询问单元组成。本论文重点介绍基于两种光纤技术的传感硬件的开发:光纤布拉格光栅和瑞利散射。光纤布拉格光栅 (FBG) 是可以沿光纤电缆长度分布的点传感器。实现具有成本效益的基于 FBG 的传感系统的关键因素之一是低成本且坚固的询问装置。介绍了用于高温沙漠环境的此类询问装置的成功开发(第 3 章)。这项开发旨在促进商业低成本实现。这些可以结合专用测试装置在内部进行评估(第 4 章)。分布式声学传感 ( DAS ) 是一种完全分布式传感技术,利用标准光纤长度上自然发生的散射点的瑞利散射。反向散射能量可以被解释为在整个光纤中实现准麦克风。DAS 最近受到广泛关注,因为它在井下监测中具有潜在应用,例如压裂监测、流量监测以及地球物理监测。本论文以地球物理应用为重点,描述了合适的询问单元的开发(第 5 章)以及新原型在现场试验中的成功验证(第 6 章)。为了进一步扩大地球物理应用范围,需要增强光纤传感电缆对垂直于其轴向方向撞击的地震波的灵敏度(第 7 章)。本论文介绍了此类电缆概念的发展,并介绍了成功的实验室和现场试验结果(第 8 章)。分布式传感技术具有降低成本并提高空间分辨率的潜力。但是,沿电缆长度的连续测量会在从光纤中的光学长度到井下环境中的位置的转换中引入不确定性。虽然已经提出了几种深度校准方法,但本论文介绍了一种新方法的发展:磁深度定位器(第 9 章)。在井中安装多个磁铁组件可提供永久的深度参考点,这使其非常适合保障延时井和油藏监测所需的深度精度(第 10 章)。多种光纤传感技术可以组合在井下环境中。由此产生的沿光纤在时间和距离上连续的大量测量结果为石油和天然气行业的井和油藏监测提供了独特的机会。